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PREFACE 

A  KNOWLEDGE  of  the  Theory  of  Interpolation  is  required  by  all 

who  make  inferences  from  the  results  of  observation,  especially 

by  astronomers,  physicists,  statisticians,  and  actuaries.  Until 

recently  it  was  somewhat  neglected  in  the  mathematical  schools 

of  many  British  Universities ;  but  of  late  years  there  has  been 

wider  acceptance  of  the  view  that  the  subject  is  easy  enough  to 

be  put  at  the  beginning  of  a  student's  course,  that  it  forms  an 
excellent  preparation  for  the  Differential  Calculus,  and  that 
it  cannot  be  left  out. 

The  present  text  is  offered  as  a  short  exposition  suitable  for 

first-year  undergraduates  :  it  is  a  separate  issue  of  the  first  four 

chapters  of  a  larger  work  by  the  same  authors,  dealing  with  the 

general  field  of  the  Calculus  of  Observations. 

23rd  July  1923. 
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CHAPTER  I 

INTERPOLATION    WITH    EQUAL   INTERVALS   OF   THE   ARGUMENT 

1.  Introduction. — Mathematics  is  occupied  largely  with  the 

idea  of  correspondence :  e.g.  to  every  number  x  there  corre- 

sponds a  value  of  x2,  thus 

oj=l,  2,  3,  4,  5,  ... 

x*  =  l,  4,  9,  16,  25,  ... 

One  of  the  two  variables  between  which  correspondence 

holds  is  called  the  argument  and  the  other  is  called  the  function 

of  that  argument. 
If  a  function  y  of  an  argument  x  is  denned  by  an  equation 

y=f(x),  where  f(x)  is  an  algebraical  expression  involving  only 

arithmetical  operations  such  as  squaring,  dividing,  etc.,  then  by 

performing  these  operations  we  can  find  accurately  the  value 

of  y,  which  corresponds  to  any  value  of  x.  But  if  2/  =  log10£ 

(say),  it  is  not  possible  to  calculate  y  by  performing  simple 

arithmetical  operations  on  x  (at  any  rate  it  is  not  possible  to 

calculate  y  accurately  by  performing  a  finite  number  of  such 

operations),  and  we  are  compelled  to  have  recourse  to  a  table, 

which  gives  the  values  of  y  corresponding  to  certain  selected 
values  of  x ;  e.g. 

x.  log  x. 

7-0  0-845  098 
7-1  0-851  258 
7-2  0-857  332 
7-3  0-863  323 

X. 

log  x. 

7-4  0-869  232 
7-5  0-875  061 

7-6  0-880  814 

7-7  0-886  491 

The  question  then  arises  as  to  how  we  can  find  the  values 

of  the  function  log  x  for  values  of  the  argument  x  which  are 
1 
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intermediate  between  the  tabulated  values,  e.g.  such  a  value  as 

a;  =7'  15  2.  The  answer  to  this  question  is  furnished  by  the 
theory  of  Interpolation,  which  in  its  most  elementary  aspect 

may  be  described  as  the  science  of  "  reading  between  the  lines 
of  a  mathematical  table." 

In  the  further  development  of  the  theory  of  interpolation 
it  will  be  shown  how  to  find  the  differential  coefficient  of  a 

function  which  is  specified  by  a  table,  and  also  to  find  its 

integral  taken  between  any  bounds  of  integration. 

A  kind  of  interpolation  was  used  by  Briggs,*  but  interpolation  of 
the  kind  hereafter  explained,  based  on  the  representation  of  functions 

by  polynomials,  was  first  introduced  by  James  Gregory  j~  in  1670. 

2.  Difference  Tables.  —  Suppose  a  function  f(u)  is  given  in 
a  table  for  the  values  a,  a  +  w,  a  +  2w,  a  +  3w,  ...  of  its 

argument  u.  It  is  required  to  find  the  value  of  the  function 
when  the  argument  has  the  value  a  +  xw,  where  x  is  a  fraction. 

Before  this  problem  can  be  solved  by  the  method  of  inter- 

polation, it  is  first  necessary  to  form  what  are  called  the  differ- 
ences of  the  tabular  values.  The  quantity 

f(a+w)-f(a) 

is  denoted  by  A/(«)  and  is  called  the  first  difference  of  f(ct). 

The  first  difference  of  f(a  +  w)  is  f(a  +  2w)  -f(a  +  w],  which  is 
denoted  by  A/(a  +  w).  Moreover,  the  quantity 

is  denoted  by  A2/(«)  and  is  called  the  second  difference  of  /(«), 
while  the  quantity 

is  denoted  by  A3/(a)  and  is  called  the  third  difference  of  /(«.), 
and  so  on. 

It  is  convenient  to  arrange  the  tabular  values  and  their 

differences  for  increasing  values  of  the  argument  in  what  is 
called  a  difference  table,  as  follows  : 

*  Briggs'  method  was,  however,  closely  related  to  the  modern  central- 
difference  formulae.  Cf.  his  Arithmclica  Logarithm,!  ca,  ch.  xiii.,  and  his 

Trirjonometria  Britannica,  ch.  xii.  Cf.  Journal  of  the  Institute  of  Actuaries, 

14,  pp.  1,  73,  84,  88  ;  15,  p.  312. 

t  Rigaud's  Correspondence  of  Scientific  Men  of  the  17th  Century,  2,  p.  209. 
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Argument.        Entry. 

a  f(a) 

a  +  w 

A. 

A2. 

A3. 

A3/(r,) 

a  +  4:W        f(a 

and  similarly  for  differences  of  order  higher  than  the  third. 
The  first  entry  f(a]  is  called  the  leading  term,  and  the  differences 

of  /(a),  that  is  to  say  A/(a),  A2/(a),  ...  are  called  the  leading 
differences.  Evidently  each  difference  in  the  table  is  the  number 
(with  its  proper  algebraic  sign)  obtained  by  subtracting  the 
number  immediately  above  and  to  the  left  from  the  number 
immediately  below  and  to  the  left. 

The  sum  of  the  entries  in  any  column  of  differences  is  equal  to  the 
difference  between  the  first  and  last  entries  of  the  preceding  column. 
This  affords  a  numerical  check  on  the  accuracy  of  the  table.  Thus  in 
the  above  table  we  have 

A2/(«  +  3tt>)  =  A2/(«)  +  A3/(a)  +  A3/(a  +  w)  +  A3/(«  +  Zw). 
An  example  of  a  difference  table  is  the  following,  which  represents 

the  natural  sines  of  angles  from  25°  40'  0"  to  25°  43'  0"  inclusive  at 
intervals  of  20". A. 

A2. 
A3. 

Argument.  Entry. 

25°40'0"       0-433134785866963 
8  7393305476 

20"      0-433222179172439  -4073056 
8  73892  32420  -  822 

40"      0-433309568404859  -4073878 
87385158542  -822 

25°41'0"      0-433396953563401 
-40  74700 

-40  75520 87381083842  -820 

20"       0-43348  43346  47243 

87377008322  -823 
40"  0-433571711655565  -4076343 

87372931979  -821 
0-433659084587544  -4077164 

87368854815  -821 -  4077985 

8  73647  76830  -  822 
-  4078807 

8  7360698023 

25°  42'  0" 

20"  0-43374  64534  42359 

40"  0-433833818219189 

25°43'0"  0-433921178917212 
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It  will  be  seen  that  in  this  case  the  third  differences  are  practically 
constant  when  quantities  beyond  the  fifteenth  place  are  neglected,  any 
departure  from  constancy  in  the  last  place  being  really  due  to  the 
neglect  of  the  sixteenth  place  of  decimals  in  the  original  entries.  So 
the  fourth  differences  are  zero. 

It  will  be  found  that  in  the  case  of  practically  all  tabular 

functions  the  differences  of  a  certain  order  are  all  zero  ;  or,  to 
speak  more  accurately,  they  are  smaller  than  one  unit  in  the  last 
decimal  place  retained  in  the  tables  in  question.  This  fact  lies 
at  the  basis  of  the  method  of  interpolation,  as  we  shall  now  see. 

3.  Symbolic  Operators.  —  The  formulae  of  the  calculus  of 
differences  may  be  very  simply  represented  by  the  use  of  what 
are  called  symbolic  operators.  Of  these  we  have  already  intro- 

duced A,  and  we  shall  now  consider  another  operator  denoted 

byE. 
Let  w  represent  the  interval  between  successive  values  of  the 

argument  of  the  f  unction  /(«),  and  let  E  denote  the  operation 

of  increasing  the  argument  by  w,  so  that  E/(a)  =/(«•  +  w)\  in 

general  we  shall  write  ̂ xf(a}=f(a  +  xw],  where  x  is  an  integer. 
Now  by  definition  we  had  &f(a  +  xw)=f(a  +  ocw  +  w)  -f(a  +  xw], 

so  A/(«  +  owt>)  =  (E  -  ~L}f(a  +  xw}.  It  is  therefore  evident  that 
the  operators  E  and  A  are  connected  by  the  relation  A  =  E  -  1  or 

E=1  +  A. 

When  symbolic  operators  obey  the  ordinary  laws  of  Algebra 
they  may  be  separated  from  the  symbols  representing  the 
functions  to  which  they  refer  and  treated  independently  in 
much  the  same  way  as  symbols  of  quantity.  Now  it  may  be 
easily  shown  that  the  following  relations  are  true  for  the 
operator  A  : 

)  +/(&)  +/(')  +  .  .  .}  =  A/(«)  +  A/(&)  +  kf(c]  +  .  .  ., 
&kf(a)  =  7jA/(«),  where  k  is  a  constant  factor, 

A™An/(a)  =  Am+n/(«),  where  m,  n  are  positive 
integers. 

The  corresponding  identities  for  E  are  : 

Thus  in  many  respects  the  operators  E  and  A  behave  like 
algebraic  symbols  and  may  be  combined  like  them. 
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The  following  examples  illustrate  the  use  of  these  operators  : 

EX,  i.  —  To  express  the  nth  differences  of  a  tabulated  function  in  terms 

of  the  successive  entries. 

i.e. 
M  (M     ̂ _     1    J 

' ^_ 

"/(a)  =f(a  +  nw)  -  nf(a  +  mo  -w)  +  -  '/(a  +  nw-2w)-.  .  . 

Ex.    2.  —  To  express  the  function  f(a  +  xw}    in  terms  of  /(a)  and  the 

successive  differences  of  f(a),  when  x  is  a  positive  integer. 

so  that 

f(a  +  xw}  =/(«)  + 

4.  The  Differences  of  a  Polynomial.  —  We  find  without 

difficulty  that  the  difference  table  for  the  function  y  =  xz  is as  follows  : 
X. 

y- 

A. 

A2. A3. 

A* 

0 0 
1 

1 1 6 
7 6 

2 8 12 t 0 
19 6 

3 
27 

18 0 37 
6 

4 64 24 0 
61 6 

5 125 
30 

91 
6  216 

It  will  be  seen  that  the  third  differences  of  this  function  are 

rigorously  constant  and  the  fourth  differences  are  zero.  This  is 
a  particular  case  of  a  general  property  which  we  shall  now 
establish. 
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Note  that  the  table  may  be  extended  indefinitely  when  we  know  the 
third  differences  to  be  constant.  For  by  definition,  when  we  add  to  an 
entry  in  a  column  of  differences  the  corresponding  first  difference,  the 
sum  so  formed  gives  the  next  entry  in  the  column.  It  follows  that  the 
column  of  second  differences  can  be  formed  from  the  leading  term  6  by 
repeatedly  adding  the  constant  third  difference  6  ;  the  column  of  first 
differences  being  formed  from  the  leading  term  1  by  adding  in  siiccession 

the  second  differences  6,  12,  18,  .  .  .  The  values  of  x3  are  then  obtained 
from  the  leading  term  0  by  adding  in  succession  the  first  differences 
1,  7,  19,  37,  61,  ... 

Consider  the  case  when  the  tabulated  function  f(x)  is  a 

polynomial  of  degree  n,  say, 

f(x') 

Then 

Now 

so  that 
)  n  =  an  +  nwan~1  +  ̂^  —  '-w2an  ~2  +  .  .  .  +  wn, 

+~LW. 

This  is  a  polynomial  of  degree  (n  -  1)  in  a,  and  therefore  the 
first  differences  of  a  polynomial  represent  another  polynomial 

of  degree  less  by  one  unit. 

By  repeated  application  of  this  result  we  see  that 

the  2nd  differences  represent  a  polynomial  of  degree  n  -  2, 
„    3rd          „  „  „  „       n-3, 

„  „  .,  „  0, 
i.e.  the  nth  differences  are  constant.  It  follows,  therefore,  that 

the  (n  +  l)th  differences  of  a  polynomial  of  the  nth  degree  are 
all  zero. 

5.  The  Differences  of  Zero.  —  A  table  of  values  of  any  power 
of  the  natural  numbers  may  be  formed  by  simple  addition  when 

the  leading  term  and  the  leading  differences  are  known,  in 
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precisely  the  same  way  as  in  forming  the  table  of  cubes  (§  4). 

The  differences  of  the  leading  term  Op,  which  are  generally  used 

in  forming  a  table  of  SOP,  are  known  as  the  differences  of  zero. 
They  are  of  frequent  occurrence  in  the  calculus  of  differences. 

In  order  to  form  a  table  of  reference  of  the  differences  of  zero  we 

apply  the  result  of  §  3  (Ex.  1), 

Anf(a)  =f(a  +  nw)  —  nf(a  +  nw  —  w)  +  ̂n(n  —  l]f(a  +  nw  —  2w)  -  ... 
and  write 

If  we  now  substitute  in  this  equation  particular  values  for  x,  p,  and  n,  we 
obtain  the  equations 

An(F  =  nP  -  n(n  -  \}P  +  ±n(n  -  1)  (n  -  Z)P  -  .  .  .+  n.lP  +  OP, 

ftn-lip-l  =  np-l  _  (n  _  i)i>  +  |(n  _  i)  (n  -  2)P  -  .  .  .  ±  1P~\ 

and  therefore  &nOP  =  n  A"  ~  *  IP  ~  \  (  1  ) 

From    the   relation  A""1/^  +  iv)  =  Aw/(«)  +  Aw~y(«)   we  see    that 
1,  and  equation  (1)  may  be  written 

(&nOP  -  1  +  Aft  ~  1OP  ~  1).  (2) 

We  now  construct  a  table  of  values  of  AnO^  by  the  repeated  applica- 

tion  of  this  equation,  remembering  that   A°01  =  0,  A101=  1,  and   also 
that 

P- 1 
2 

1 
1 

=  0  for  n  >p. 

A20^.     A'O-P. 

2 

A40*. «*• 
-'• 

3 1 6 6 
4 1 14 36 24 
5 1 30 

150 240 120 
6 1 62 540 1560 1800 720 
7 1 126 1806 8400 16800 15120 
8 1 254 5796 40824 126000 191520 
9 1 510 18150 186480 834120 1905120 

10 1 1022 55980 818520 5103000 16435440 

From  equation  (2)  we  see  that  the  value  of  a  particular  difference 
is  obtained  by  taking  n  times  the  sum  of  the  two  numbers  of  the 

preceding  row  which  are  situated  in  the  same  column  and  in  the  preced- 
ing column  respectively.  For  example, 

A307  =  3(62  +  540) 
=  1806. 

6.  The    Differences   of  x(x-l)(x-2)  .  .  .  (x-p  +  1).- 
Among  the  polynomials  of  degree  p  there  is  one  polynomial  of 

special  interest  in  the  theory  of  interpolation,  namely, 

x(x  -  1)  (x  -  2)  .  .  .  (x  -  p  + 1). 
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This  polynomial  is  denoted  by  [x]»  and  is  called  a  factorial.  If 

we  suppose  the  interval  of  the  argument  in  the  difference  table 

of  [X]P  to  be  unity,  we  have 

[a]p  =  a(a-l)(a  -2)  .  .  .  (a-p  +  l), 

[a  +  !]P  =(a  +  l)a(a-l)  («  -2)  .  .  .  (a-p  +  2), 

=  a(a-l)(a-2)(a-3)  .  .  .  (a-p  +  2)  {(a  +  1)  -(a-p 

so  that  &[x]P=p[x]P-1* 
It  follows  that 

A|>]P      [S]P-I         [s+l]P  =  [sF ~ 

a  result  that  may  now  be  used  to  tabulate  the  values  of  [x]P/p  !  as  in  the 
following  table  : 

0 
1 0 
4 1 0 10 

5 1 20 15 
6 

35 
35 

21 

56 
70 

56 

84 126 126 

x.  [>]2!. 
0 

1  0 
2  I 
3  3 
4  6 
5  10 
6  15 
7  21 
8  28 
9  36 

7.  The  Representation  of  a  Polynomial  by  Factorials.  — 
In  §  4  we  found  an  expression  for  A/(#),  the  first  difference 

of  a  polynomial  of  degree  n,  in  a  form  which  is  less  simple 

than  the  polynomial  itself.  It  is  more  convenient  to  carry  out 

the  operation  of  differencing  by  the  use  of  factorials,  using  the 
relation  of  §  6  : 

^[x]P=p[x]P-\  (I) 
Let  <£*;(#)  denote  a  polynomial  in  x  of  degree  k.  We  may 

write  4>k(x)=r  +  (x-n  +  k)<j>k-i(;K)>  where  r  is  the  remainder  and 
<£A;-I(#)  the  quotient  when  </>A.(a;)  is  divided  by  (x-n  +  Jc),  so 

<f>k-i(x)  is  of  degree  (7j-l).  By  a  repeated  application  of  this 

*  This  is  analogous  to  the  formula  of  the  differential  calculus  —  (xv)—pxp-\ 
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transformation,  we  obtain  an  expression  for  a  polynomial  of  the 
wth  degree  in  terms  of  factorials  : 

where  a,  (3,  7,  .  .  .  are  constants  and  </>0(a;)  is  a  constant  v  (say). 
We  thus  obtain  the  result 

<f>n(x)  =  a  +  p[x]+7[xJi  +  S[x]3  +  .  .  .  +  v[x]'\  (2) 
Ex.  —  To  represent  the  function  y  —  x4  —  12x3  +  42a;2  —  30x  +  9  and  its 

successive  differences  in  the  factorial  notation. 

Using  detached  coefficients  when  dividing  by  x,  x  —  1,  x  —  2,  .  .  .,* 

1 

2 

3 

1-12  +  42-30 
0+    1-11  +  31 
1  -  11+31 

0+    2-18 

1 

1-9 

0+    3 

13 

1|  -6 
we  obtain  the  value  of  y  in  the  form 

y  =  O]4  -  6|>]3  +  1 3[>]2  +  [>]  +  9. 

The  successive  differences  are  given  by 

&y   =  4[>]3  -  18[>]2  +  260]  +  !» 

A2T/=12[>]2-36|>]  +  26, 

Now  let  a  be  one  of  the  tabulated  values  of  the  argument, 
of  a  polynomial  of  degree  n,  and  let  w  be  the  interval  between 

successive  values  of  the  argument.  Consider  the  value 

f(a  +  xw)  of  the  polynomial  corresponding  to  the  value  (a  +  xw) 

of  the  argument.  Writing  f(a  +  xw)  for  $n(x]  in  (2)  and 

applying  the  operation  denoted  by  equation  (1)  to  both  sides  of 

equation  (2),  we  find  that 

*  +  .  .  .  +  nv[x]n-\  (3) 

(D  309) 
Chrystal,  Algebra,  1,  p.  108. 
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Differencing  this  equation,  we  obtain 

]2  +  .  .  .  +  n(n-l)v[x]n-*.    (4) 
Moreover, 

&f(a  +  xw}  =  2.3.3  +  2.3.4e[»]1  +  3.4.5£[>]2  +  .  .  . 

+  n(n-I)(n-2)v[x]n-*,     (5) 
and  so  on  for  differences  of  higher  order.  The  values  of  the 

coefficients  a,  ft,  y,  .  .  .  are  found  by  putting  £=0  in  each  of 
the  equations  (2),  (3),  (4),  ...  so  that 

Equation  (2)  may  now  be  written 

x(x-l)(x-2)  .  .  .  fo-rc  +  l)A?t/.(  x 

nl  J^  '' 
This  formula  *  enables  us  to  express  the  polynomial  f(a  +  xw) 

in  terms  of  the  factorials  x,  x(x-~L),  x(x-l)(x-  2),  .  .  .  ̂ uhen  a 
difference  table  of  the  function  is  given. 

This  general  formula  may  be  easily  verified  for  special  values  of  x. 
When  x  =  0,  it  becomes  /(a)  =/(«•)• 
When  x=  1,  then 

=/(a)+  {f(a+w)  —/(«)},  which  is  an  identity. 
When  x  —  2, 

f(a  +  Zw)  =/(«) 

+  {/(a  +  Zw)  -  Zf(a  +  w)  +/(«)}. 

8.  The  Gregory-Newton  Formula  of  Interpolation.  —  The 
general  formula  of  the  last  section  may  be  applied  to  solve  the 

problem  of  interpolation. 

Suppose  that  y  is  a  function  of  an  argument  u  and  that  the 

values  of  y  given  in  the  table  are  /(«),  f(a  +  w),  f(a 

f(a  +  3iv),  .  .  .  corresponding  to  the  values  a,  a  +  w, 
a  +  3tv,  ...  of  u.  Also  suppose  that  these  values  of  the  function 
are  entered  in  a  difference  table  and  that  the  differences  of 

order  n  are  constant.  We  are  not  supposed  to  know  the  values 

of  y  which  correspond  to  other  values  of  u,  such  as  u  =  a  +  \w. 
*  Cf.  Ex.  2,  §  3. 
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It  is  required  to  find  an  analytical  expression  for  these  inter- 
mediate values  of  y. 

The  problem  may  be  stated  graphically  as  follows  : 
Draw  the  rectangular  axes  Ou,  Oy.  Let  K,  L,  M,  N  .  .  . 

be  points  on  the  u  axis  having  abscissae  a,  a  +  w,  a  +  2w,  a  +  3w, 

.  .  .  respectively.  At  these  points  erect  ordinates  KA,  LB, 

MC,  ND,  .  .  .  equal  respectively  to  the  entries  f(a),  f(a  +  w), 

f(a  +  2w),  f(a  +  3iv),  .  .  .  Then  the  points  A,  B,  C,  D,  .  .  .  so 

determined  are  points  on  the  graph  of  the  function.*  The 

problem  of  finding  a  "  smooth  "  curve  to  pass  through  the  points 
A,  B,  C,  D,  .  .  .  has  not  a  unique  solution  :  in  fact  an  infinite 

number  of  curves  satisfying  these  conditions  can  be  found.  As 

our  aim  is  a  practical  one,  we  naturally  choose  the  simplest 

solution  of  our  problem.  y 
Eemembering  that  the 

simplest  functions  are  poly- 
nomials,  we  inquire  if  it  is 

possible  to  pass  through  the 
points  A,  B,  C,  ...  a  curve 

which  is  the  graph  of  a  poly- 
nomial function  of  degree  n. 

We    have    already    seen  °  K        L       M       N T^TO     1 

(§  4)  that  for  any  polynomial 

of  degree  n  the  differences  of  order  n  are  constant  and  for  the 

set  of  values  /(a),  f(a  +  w),  f(a  +  2w),  ...  it  has  been  assumed 
that  the  differences  of  order  n  are  constant.  This  being  so, 

a  polynomial  of  degree  n  exists  which  takes  the  values  f(a), 

f(a  +  w),  f(a  +  2  w),  .  .  .  when  the  argument  u  has  the  values 

a,  a  +  w,  a  +  2w,  .  .  .  ;  in  fact,  by  the  last  section,  we  can  write 
down  an  expression  for  the  polynomial.  It  is 

y  =f(a) 

Bx 

2! 

/Y»f  /yi %Aj\tAJ 

n\ 
-/M, 
*  We  do  not  know  anything  about  the  portions  of  the  graph  intermediate 

between  these  points,  but  we  assume  that  the  graph  is  a  smooth  curve  ;  for 
our  present  purpose  we  can  take  this  to  mean  that  the  function  has  finite 
differential  coefficients  of  all  orders  at  every  point. 
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where    x    is   connected   with    u    by   the    relation    u  =  a  +  xw, 
and  where 

)  stands  for  /(a  +  w)  -f(a), 

A2/(a)  stands  for  f(a  +  2iv)  -  2f(a  +  w)  +/(«), 
and  so  on. 

We  shall  now  take  the  polynomial  (1)  to  represent  the  function 
y  also  for  values  of  the  argument  intermediate  between  the 

tabulated  values.  The  portions  of  the  graph  intermediate 

between  the  points  A,  B,  C,  .  .  .  may  therefore  be  filled  in  by 
drawing  the  curve 

y=f(a+xw) 

=/(«)  +  *A/(«)  +  A^a)  +  .  .  .  (2) 

and  in  order  to  compute  the  value  of  y  corresponding  to  any 

intermediate  value  of  the  argument  such  as  a  +  ̂w,  we  simply 

substitute  the  value  x  =  |  in  this  formula,*  which  is  the  analyti- 
cal expression  required. 

The  fundamental  problem  of  interpolation  is  thus  solved. 

The  formula  (1)  is  often  referred  to  as  Newton's  formula  of 
interpolation,  although  it  was  discovered  by  James  Gregory  in 
1670.1 

The  application  of  the  Gregory-Newton  formula  is  illustrated  by  the 
following  examples  : 

*  Many  books  of  logarithmic  tables,  etc.,  contain  a  table  of  the  binomial 
coefficients  required  in  the  interpolation  formula  (1),  at  intervals  of  0-01  from 
£C=0  to  a;=l. 

t  Of.  a  letter  of  Gregory  to  Collins  of  date  November  23,  1670,  printed  in 

Rigaud's  Correspondence,  2,  p.  209.  An  example  of  the  use  of  the  formula  is 
worked  out  on  p.  211  of  Rigaud.  Collins  was  accustomed  to  send  on  to  Newton 
the  mathematical  discoveries  of  Gregory  (cf.  Rigaud,  2,  p.  335). 

Newton's  publications  on  interpolation  are  contained  in  : 
1.  The    Methodus    Differential    published    in    1711    but    written    before 

October  1676. 

2.  A  letter  written  in  1676  to  John  Smith. 

3.  Lemma  v.  in  Book  iii.  of  the  Principia  published  in  1687.     The  above 
formula  is  Case  i. 

4.  Various  references  in  the  Commerdum  Epistolicum  of  dates  1672/3  to  1676. 
These  have  been  collected  and  edited  by  D.  C.  Eraser  in  the  Journal  of  the 

Institute  of  Actuaries,  61  (1918-19),  pp.  77  and  211. 
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Ex.  1.  —  From  the  table  given  leloiv  to  find  the  entry  corresponding  to 
!C  =  21. 

Argument.  Entry.  A.  A2.  A3.        A4. 

20      0-229314955248 
701747247 

22      0-230016702495  602297 
702349544          -  1944 

24     0-230719052039  600353         4 

702949897          -1940 

2G      0-231422001936  598413          3 

703548310         -1937 

28     0-232125550246  596476 
704144786 

30      0-232829695032 

Here    a  =  20,    w  =  2,    f(a  +  xw)  =/(2  1),    and  x  =  |. 
X(X  ~  V  -  2)A3/(20)  +  .  .  . 

=  229314955248  +  1(701747247)  -  1(602297)  -  TV  (1944) 

=  229314955248  _f75287-l 

+  350873623-5  "  \  +  121-5 =  229665828871-5  -  75408-6 
so 

/(21)  =  0-229665753463. 

Ex.  2.  —  To  find  the  co-ordinate  X  of  the  sun  on  November  10,  1910,  at 

4h  30m  G.M.T.  (X  is  the  sun's  true  geocentric  co-ordinate  measured  on  a  line 
passing  through  the  true  equinox  of  the  date). 

The  Nautical  Almanac  gives  the  following  readings  from  which  we 
construct  a  difference  table  : 

1910.  -X.  A.  A2.       A3. 

November  9-0  0-6850997 -63809 

9-5  0-6787188  -514 
-64323  4 

10-0  0-6722865  -510 
-64833  7 

10-5  0-6658032  -503 
-65336  2 

11-0  0-6592696  -501 -65837 

11-5  0-6526859 

We  must  interpolate  for  4h  30m  from  November  10-0.  The  argument 

is  12b.  Then  4h  30™,  aa  a  fraction  of  the  argument,  gives  x  =  0-375. 
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log  x=  9-5740313 
log  (a;-  l)  =  9-7958800(?i), 

where  (ri)  indicates  that  9-7958800  is  the  logarithm  of  a  negative  number 

log  1  =  9-6989700 

log  Jz(z-l)  =  9-0688813(?i) 
log  1  =  9-5228787 

log  (a  -2)  =  0-2  108534(n) 
log  lx(x  -!)(»-  2)  =  8-80261  34. Also 

log  (-64833)  =  4-81l7961(?i)  log  (  -  503)  =  2-7015680(?i) 
log  £0  =  9-5740313  log  |x(^  -  1)  =  9-0688813(?i) 

log  (-64833z)  =  4-3858274(?i)  log  |x(x-  1)(-  503)  =  1-7704493 
=  log  (-24312-4)  =  log  58-94 

log  2  =  0-3010300 

log  lx(x-\}(x-  2)  =  8-8026134 
log  lz(:e-l)(z-2)(2)  =  9-1036434  =  log  0-1. 

Therefore      -  X  =  0-67228650  -  0-00243124  +  0-00000589, 

and  finally  -  X  =  0-6698612. 

9.  An  Alternative  Form  of  the  Gregory  -  Newton 

Formula.  —  The  Gregory-Newton  formula  may  be  written  in 
an  alternative  form  which  is  convenient  when  an  arithmometer  * 

is  used.  ̂ Rearranging  the  formula  of  the  last  section  in  the  form 

and  assuming  the  differences  of  order  n  to  be  constant,  we  may 

replace  the  Gregory-Newton  formula  by 

f(a  +  xw]  =f(a)  +  xult  (1) 

where  u^  =  A/(a)  -  1(1  -  x)uz, 

wn  =  Aw/(«),  which  is  constant. 

When  computing  a  value  of  the  function  by  this  method,  we 
begin  with  the  constant  difference  un  and  calculate  in  succession 

the  values  of  un_ly  un_2,  .  .  .,  ult  finally  substituting  the  value 

of  Wj  in  equation  (1).  The  following  example  will  serve  as  an 
illustration  of  this  method  : 

t  When  an  arithmometer  is  not  available  Crelle's  Calculating  Tables  will  be 
found  useful  for  this  purpose. 
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Ex.  —  Tofindf(6)  when  6  =  24°-46980  05207  020,  having  given 
0.  /(#).  A.  AV  A*.       As. 

24-4         0-216  198  561  343 
168  272  307 

24-5         0-216366833650  745715 
169018022  768 

24-6         0-216535851672  746483  5 
169  764  505  773 

24-7         0-216705616177                                         747256  4 
170  511  761  777 

24-8         0-216876127938                                         748033  5 
171259794  782 

24-9         0-217047387732  748815 
172  008  609 

25-0         0-217219396341 

Here      w  =  0-l,          a  =  24°-4,          x  =  0-698  005  207  02. 
Hence  «3  =  A3/(«)  -  |(3  -  z)A4/(a)  =  768-0-576x5 

=  765-1, 

<w2  =  A2/(a)-l(2-o>3=745  715-0-434  Ox  765-1 
=  745  383-0, 

M1  =  A/(a)-l(l  -a>2=168272  307-0-150  997  4  x  745  383 
=  168  159  756-1. 

Then 

f(a  +  xiv)  =/(«)  +  asMj 
=  0-216  198  561  343  +  0-698  005  207  02  x  0-000  168  159  756 
=  0-216  198  561  343 

+  117  376  385, 

or       /(0)  =  0-216  315  937  728. 

10.  The  Binomial  Theorem.  —  By  use  of  the  operator  E,  we 

can  write  the  Gregory-Newton  interpolation  formula  in  the  form 

When  thus  written,  the  formula  is  seen  to  be  the  same  as  that 

obtained  by  expanding  (1  +  A)*  by  the  Binomial  Theorem  in 
ascending  powers  of  A  and  then  operating  on  f(a)  with  the 
terms  of  the  series  so  formed,  i.e. 

The  Binomial  Theorem  was  made  known  (in  correspondence) 

six  years  after  the  Gregory-Newton  formula  ;  in  fact,  Newton 
seems  to  have  discovered  the  Binomial  Theorem  by  forming  the 

expansions  of  (1  +  x)n  directly  for  integral  values  of  n,  and  then 
writing  down  the  powers  of  x  in  these  expansions.  In  the 
case  of  the  coefficient  of  x2  he  would  have  : 
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Coefficient  of  xz. 
A. 

0 
0 

0 
1 

1 
2 

3 
3 

6 
4 

1 
1 

2 
1 

3 
1 

4 

16 

Exponent.  Coefficient  of  xz.  A.  A2. 
0 

1 

2 

3 

4 

5  10 

whence  evidently  the  coefficient  is  of  the  second  degree  in  n. 

Since  it  vanishes  when  n  =  0  and  also  when  n  =  1,  it  must 

contain  the  factors  n  and  (n  - 1) ;  and,  since  the  coefficient  has 

the  value  1  when  n  =  2,  it  is  —~ — -. 

We  may  remark  that  if  we  form  a  difference  table  for  (1  +x)n  thus  : 

Argument.  Entry.  A.  Aa.  A3. 
0  1 

x 

x(l+x)  x3 
2  (l+o;)2  x2(l+x) 

xs(l  +  a;) 

then  on  substituting  the  values  /(O)  =  1,  A/(0)  =  a;  ...  in  the  Gregory- 
Newton  formula 

x2  +  .  . n-\  ffvi    ̂ _    "J    j 

we  obtain  (1  +  x)n  =1  +nx  +  —  --  'x2 

which  is  the  binomial  expansion. 

EXAMPLES  ON  CHAPTER  I 

1.  Form  the  difference  tables  corresponding  to  the  following  entries 
0-  log  tan  0. 

(a)    26°  10'  0"  9-691  380  858  103  01 
10"  434  054  052  28 
20"  487  246  020  72 
30"  540  434  009  42 
40"  59361801947 
•r>0"  64679805197 

26°11'0"  9-69169997410801 
10"  753  146  188  70 
20"  80631429511 
30"  859  478  428  36 
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x.  sin  x. 

(b)   28°  40' 00"  0-479713113250246 
10"  755651470168 
20"  798  188  562  452 
30"  840  724  526  998 
40"  883  259  363  705 
50"  925  793  072  474 

28°  41' 00"  968325653205 
10"  0-480010857105798 

2.  If  y  =  2.c3  —  x2  +  3x  +  1,  calculate  the  values  of  y  corresponding  to 
x  =  0,  1,  2,  3,  4,  5,  and  form  the  table  of  differences.      Prove  theoretically 
that  the  second  difference  is  12x  +  10  and  verify  this  numerically. 

3.  Find  the  function  whose  first  difference  is  the  function 

ax3  +  fix2  +  yx  +  8. 
4.  Find  the  successive  differences  of 

(a)  1/x,  the  interval  being  unity, 
(b)  cos  nx,  the  interval  being  w. 

5.  Express  f(x)  =  3x3  +  xz  +  x+  1  in  the  form 

ax(x  -  1)  (x  -  2)  +  /3x(x  -  1)  +  yx  +  8 

by  comparing  coefficients.     Calculate  the  values  of/(x)  for  x  =  0,  1,  2,  3,  4,  5, 
etc.,  and  form  a  difference  table.      Verify  the  equation 

/(x)  =/(0)  +  xA/(0)  +  ̂1^(0)  +  ̂-1K-C-2)A3/(0). 
6.  Compute  the  third  difference  of  /(51)  by  the  formula  of  §  3,  Ex.  1, 

from  the  following  table  of  entries  : 

x       51         52         53        54 

/(x)    132651     140608     148877    157464 

verifying  the  result  by  means  of  a  difference  table. 
7.  Given  the  table  of  values 

x          -    3  -2  -1  0  1 

y  16  7  4  1 

find  by  means  of  the  Gregory-Newton  formula  an  expression  for  y  as  a 
function  of  x. 

8.  Construct  a  difference  table  having  given 

log  5-950  =  0-776  701  1840 
log  5-951  =  0-776  773  802  4 
log  5-952  =  0-776  846  408  7 
log  5-953  =  0-776  919  002  8 
log  5-954  =  0-776  991  584  9 

and  determine  log  5-9505. 
9.  Let  p,   q,  r,   s  be  successive  entries   in  a  table  corresponding  to 

equidistant  arguments. 
Show  that  when  third  differences  are  taken  into  account  the  entry 
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corresponding  to  the  argument  half-way  between  the  arguments   of  q 
and  r  is 

q  +  r     (q  +  r)-(p  +  s)   .  +  —   —         — -.  (De  Morgan.) 
2  16 

10.  Let  p,  q,  r,  s  be  successive  entries  (corresponding  to  equidistant 
arguments)    in  a    table.       It  is  required  to  interpose    3   entries  (corre- 

sponding to  equidistant  arguments)  between  q  and  r,  using  third  differ- 
ences.    Show  that  this  may  be  done  as  follows  : 

Between  q  and  r  interpose  3  arithmetical  means  A,  B,  and  C  ;  also 

between  3q  —  2p  —  s  and  3r  —  2s  —  p  interpose  3  means  A',  B',  and  C'. 
Then  the  3  terms  required  are  A  +  ̂ VA',  B  +  ̂ B',  C  +  ̂ C'. (De  Morgan.) 

11.  Determine  log  6-0405,  having  given 

log  6-040  =  0-7810369386 
log  6-041=0-7811088357 
log  6-042  =  0-7811807209 
log  6-043  =  0-7812525942 
log  6.044  =  0-7813244557 

12.  Using  the  method  of  §  9,  find  sin  24°-4698005207,  having  given the  values 
B.  sin  6. 

24-25  0-410718852614 
24-50  0-414693242656 

24-75  0-418659737537 
25-00  0-422618261741 

25-25  0-426568739902 

25-50  0-430511096808 

13.  Given  the  values 

x.  f(x). 

0  ,  858-313740095 
1  869-645772308 
2  880-975826766 
3  892-303904583 

4  903-630006875 

calculate /(I -5)  by  the  Gregory-Newton  formula. 
14.  The  values  of  a  function  corresponding  to  the  values  1,  2,  3,  4,  5 

of    the     argument    are     0-198669,     0-237702,     0-276355,     0-314566, 
0-352274  respectively.     Calculate  the  values  of  the  function  when  the 
argument  has  the  values  1-25  and  1-75  respectively. 

15.  Using    the    difference  table    given    in   §  2,    find    the  values    of 

sin  25°  40'  10"  and  sin  25°  40'  30".     Also  verify  the  answers 
sin  25°  40' 50"  =  0-433  353  261  493  416, 
sin  25°  41' 10"  =  0-433  440  644  614  711, 
sin  25°  41'  30"  =  0-433  528  023  660  896, 
sin  25°  41'  50"  =  0-433  615  398  631  149, 

obtained  by  taking  x  numerically  less  than  unity  in  the  formula  of  §  8. 
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16.  Calculate  log  tan  24°  0'  5",  given  the  values 

log  tan  24°  0'  0"  =  9-648  583  137  400  95 
log  tan  24°  0'  20"  =  9-648  696  457  723  08 
log  tan  24°  0'  40"  =  9-648  809  758  267  66 
log  tan  24°  1'  0"  =  9-648  923  039  045  83 
log  tan  24°  1'  20"  =  9-649  036  300  068  75 
log  tan  24°  1'  40"  =  9-649  149  541  347  57. 

2 

17.  The  following  table  gives  the  values  of  I(x)  =  I      e~s  ds  : 
f  oo 

/; 
x.  I(x). 
0-00  0-886  226  92 
0-01  0-876  227  24 
0-02  0-866  229  57 
0-03  0-856  235  90 
0-04  0-846  248  22 
0-05  0-836  268  53 

Calculate  I(x)  for  £  =  0-025  by  interpolation  and  verify  your  result  by 
use  of  the  formula 

/yO  /y»O  /y>  • 

1(0) -!<*)  =  *-  ±+_---+.  .. 



CHAPTER  II 

INTERPOLATION   WITH   UNEQUAL   INTERVALS   OF   THE   ARGUMENT 

11.  Divided  Differences.  —  We  have  so  far  assumed  that  the 

values  of  the  argument  proceed  by  equal  steps  ;  but  with  data 
derived  from  observation  it  is  not  always  possible  to  complete  a 

difference  table  in  this  way,  For  example,  when  astronomical 

observations  are  disturbed  by  clouds  there  are  gaps  in  the 
records. 

Consider  the  case  in  which  the  values  of  the  argument,  for 

which  the  function  is  known,  are  unequally  spaced,  and  suppose 

that  the  values  of  f(x)  are  known  for  x  =  a0,  x  =  a1}  x  =  a2> 

.  .  .,  x  =  an,  where  the  intervals  c^-a^,  az-a1}  a3-a2,  .  .  ., 
an-an-i  need  not  be  equal.  In  place  of  ordinary  differences 

we  now  introduce  what  are  known  as  divided  differences*  Let 
us  form  in  succession  the  quantities 

and  so  on.     These  are  called  divided  differences  of  the  first  order. 
Moreover,  let  us  form 

„     7  \  /K  aa)  -Aa*  gi)     //„          7N 2>    «1>    ao),—  ——  =J(a3>  a'£>  al)- ~ 
"2  ~  "0  "3  ~ 

These  are  called  divided  differences  of  the  second  order.     Also  let 

This  is  called  a  divided  difference  of  the  third  order.  The 
divided  differences  of  higher  orders  are  formed  in  the  same  way, 

so  that  the  order  of  a  divided  difference  is  less  by  unity  than  the 
number  of  arguments  required  for  its  definition. 

*  Divided  differences  might  fairly  be  ascribed  to  Newton,  Lemma  v.  The 
term  was  used  first  by  De  Morgan,  Diff.  and  Int.  Calc.  (1842),  p.  550,  and  after- 

wards by  Oppermann,  Journ.  Inst.  Act.  15  (1869),  p.  146.  Ampere,  Ann.  de 
Gergonne,  26  (1826),  p.  329,  used  the  name  interpolator!/  functions. 

20 
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Divided  differences  may  be  expressed  more  symmetrically 
as  follows  : 

«o  -  ai     ai  -  ao 

f(a2,  av  «0) 

|  /K)  i  +_J_(/K)  , 
«2  - ,  , 

i     /  \    /  v  "T" 

0  -  rtj)  (aQ  -  «2)     (aj  -  a0)  (^  -  «2)     («2  -  a±)  (az  -  a0)' 

_ 

K  -  «fl)  («1  - 

__ 
(«2  ~  ao)  K  -  «l)  («2  ~  as)       (a3  ~  ao)  (aS  ~  «l)  (a3  -  «z) 

In  general,  as  may  easily  l>e  shown  by  induction,  a  divided 

difference  oftliepth  order  is  a  symmetric  function  of  its  arguments 

and  is  in  fact  the  sum  of  (p  +  1)  functions  of  the  form 

_  _    /K)  _ 
difference-product  of  ar  with  a0,  alt  a2,  .  .  .,  «r-i,  ar+i>  •  •  •>  ap 

It  is  evident  from  this  statement  that  when  the  arguments  required 
to  form  a  particular  divided  difference  are  arranged  in  a  different  order, 
the  value  of  the  divided  difference  remains  unchanged,  e.g. 

/Ku  ««_!>  «n_2'    •    •    •>   al>  ao)  =/(aO'  aV  ffl2>    •   •    •>    a»i-l»  ftn)' 

Divided  differences  are  arranged  in  a  taUe  of  divided  differ- 
ences as  follows  : 

Argument.        Entry. 

/K) 

f(az,  a3)  /(%,  aa,  «3,  a4) 

,  «4,  a5) 
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The    following   may  serve    as    an    example    of  a    table  of  divided 
differences  : 

X. 

0 
f(x). 

132651 
8113 

2 148877 158 
8587 1 

3 157464 162 
8911 1 

4 166375 167 

9579 1 
7 195112 173 

10444 
9 216000 

In  this  example  the  differences  of  the  third  order  are  constant.  We 
shall  now  see  under  what  circumstances  a  column  of  constant  divided 
differences  is  obtained. 

12.  Theorems  on  Divided  Differences. 

I.  If  a  function  f(x]  is  numerically  equal  to  the  sum  of  two 
functions  g(x],  h(x},for  a  set  of  values  of  the  argument  x,  then 
any  divided  difference  of  f(x)  formed  from  those  values  is  equal  to 
the  sum  of  the  corresponding  divided  differences  of  g(x)  and  h(x). 

For  example, 

*n     ,  \  _/K)  ~/K) /  1  tv-t  .    Lbfi  I  —  - - 

and  similarly  for  differences  of  higher  order. 

II.  A  divided  difference  of  cf(x],  where  c  is  a  constant  factor, 
is  c  times  the  corresponding  divided  difference  of  f(x). 

For  example,  the  divided  difference  of  the  first  order  of  cf(x)  is 

c/K)  -  cf(a0)  _    f(a^  -f(a0)  _  , -  -  -c-  -  -  cj(av  a0). 
ai  ~  ao 

III.   The  divided  differences  of  order  n  of  x11  are  constant 
(where  n  is  a  positive  integer). 

Let  f(x)  =  xn. 

Then  f(a0,  aj  =  (a0n  -  «1w)/(n'.0  -  «j) 
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a  homogeneous  function  of  aQ,  a1  of  degree  (n  -  1).     Moreover, 

f(a0,  av  a2) 

which  is  a  homogeneous  function  of  aQ,  av  a2  of  degree  (n  -  2). 
In  general  /(«0,  al5  az,  .  .  .,  a^)  is  a  homogeneous  function  of 

aQ,  av  az,  .  .  .,  ap  of  degree  (n  -  p).  Taking  p  =  n,  we  see  that 
f( a 

0, 
.  .  .,  an)  is  a  constant. 

Corollary:  The  divided  differences  of  order  (n  +  1)  ofxn  are  zero. 
IV.  The  divided  differences  of  order  n  of  a  polynomial  of  the 

nth  degree  are  constant. 

This  theorem  follows  immediately  from  theorems  I.,  II.,  and 
III.,  since  the  divided  difference  of  order  n  of  each  of  the  terms 

whose  degree  is  less  than  n  is  zero. 

Y.  A  divided  difference  of  order  r  may  be  expressed  as  the 

quotient  of  two  determinants  each  of  order  r  +  1. 
Consider  the  divided  difference  of  the  third  order, 

* 

_  v/(«0)  (difference-product  of  a1}  a2,  «3) 
difference-product  of  aQ,  av  a2,  as 

Now  a  difference-product  may  be  expressed  as  a  determinant 

of  the  kind  known  as  Vandermonde's,  thus 

Therefore 

product  of  alt  az,  «3)  = 
-Y      2              /7      2              yy     2 

Ct/-|                 VVO                t-t'O 

«!         «2         «3 
111 

n  2      n  2      «  2 tt/l                   tt/Q                  It/O J.                29                O /K) ffj      az      as 
V 

111 

(-(f\              Ct-t                Ctn               Cf'fy U                 J_                 £t                *S 

^2       ft           Ci'           Ct 

&Q                       d^                       &<£                       Ct^ 

1111 
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/K)  /K)  /K)  /K) 

a, 

1111 
and  so  in  general  for  differences  of  order  higher  than  the  third. 

13.  Newton's  Formula  for  Unequal  Intervals. — Let  f(u) 
be  a  function  whose  divided  differences  of  (say)  order  4  vanish 

or  are  negligible ;  and  suppose  its  values  for  4  arguments 

a0,  av  a,2>  as  are  known  so  that  the  table  of  divided  differences 
is  as  follows : 

Argument. 

a0 

Ctc. 

Entry. 

/K) 

/K) 

/K) 

/Yrtn,  a,.  a0) 
J   \     0'        i>       "/ 

f(av  ff2,  «3 

We  may  obtain  the  value  of  the  function  for  any  other 

argument  u  in  the  following  way.  Beginning  with  the  constant 
difference  which  is  of  order  3>  we  have 

f(u,  a0,  av  aa)  =/(ac,  av  a2,  a3). 

By  definition  of  the  divided  difference  of  order  2, 
(1) a 

0> 

-  a2)f(aQ,  av  az (2) 

f(u,  a0,  «j)  =f(a0,  av  «2) 
and  therefore 

f(u,  aQ,  aj  =/(«0,  alt  az] 

Again  by  definition, 

Au>  ao)  =/(«o>  «j)  +  (u  ~  ai)f(u>  ao>  ai}> 

and  substituting  in  this  equation  the  value  of  f(u,  aQ,  a^)  from  (2), 

f(u>  ao)  =f(ao>ai)  +  (u  ~  ai)f(ao>  ai>«2)  +  (u  ~  «i)  (u  -  a2)f(a0,avaz,as). 

Also  by  definition      f(u)  =/(a0)  +  (u  ~  ao)f(u>  ao)'  (4) 

or     /(w)  =/(rto)  +  (u  ~  «o)/(«o'  fti)  +  (u  ~  ao)  (u  ~  «i)/K>  «i>  ̂ 2) 
+  (w  -  «0)  (u  -  ttj)  (u  -  «2)/(a0,  «!,  «2;  %).     (5) 
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From  the  equations  (1),  (2),  (3),  (4)  the  quantities^?/, a0>flflfa2), 
f(u,  a0,  aj,  f(u,  a0),  f(u)  are  now  known  and  may  be  inserted 
in  the  table  of  divided  differences  thus :  * 
Argument.       Entry. 
/]/  ~f{  II  I Uj  I  \  Uf  I 

f(u>  «o) 

«o     /K)  /fa,«0,«i) 
ai          /K)  /K>  «i,  «2) 

f(ai>  «2)  /K>  «1>  «2.  «3) 

«2  /(«2)  /K,  «2,  03) 

Formula  (5)  may  evidently  be  generalised  to  express  a 
function  whose  divided  differences  of  order  (n  +  1)  are  negligible 
or  zero,  in  the  form 

/fa)  =/K)  +  fa  -  s)/K>  «i)  +  fa  -  «0)  fa  -  «i)/K  «i, «.) 

This  formula  was  discovered  by  Newton,  f 

The  first  term  on  the  right-hand  side  of  this  equation  represents  the 
polynomial  of  zero  degree,  which  has  the  value  /(«0)  at  u  =  a0.  The 
first  two  terms  together  represent  the  polynomial  of  degree  1,  which  has 
the  values  /(«0)  and  f(a^)  at  «0  and  a-^  respectively,  and  so  on. 

The  remainder  term  which  must  be  added  to  the  right-hand  side  of 
the  equation  in  order  to  obtain  strict  accuracy  is  in  fact 

(u  -  a0)  (u  -  Oj)-  .  .  .   (u  -  any(w,  «0,  ffij,  .   .   ,,  «„). 

But  this  term  vanishes  if  the  divided  differences  of  order  n  are  rigorously 
constant. 

Ex. — From  the  table  given  below  to  find  the  entry  corresponding  to  3-7608. 
x  f(x) 

a0=0  -3989423 -  500 

ax=  2-5069  -3988169  -199 -  1499 

a2=  5-0154  -3984408  -199 -2496 

«3=  7-5270  -3978138 

*  In  practice  the  value  of  f(u)  is  usually  found  by  forming  the  successive 
divided  differences  in  this  way,  as  in  the  worked-out  example  below. 

t  Principia  (1687),  Book  iii.  Lemma  v.  Case  ii.     Cf.  Cauchy,  (Euvres,  (1)  5, 
p.  409. 

(D  309)  C 
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Forming  the  successive  divided  differences  of  /(«),  where  u  =3-  7608, 
we  find 

/C«,  «o>  «i)=/(«0'  «i>  °a)=  ~  199' 
/(;t)  «0)=  -500  +  1-2539  x(-  199)=  -749-526, 

f(u]  =  -3989423  +  3-7608  x  (  -  749-526). 

The  calculated  value  is  therefore  0-3986604. 

14.  The  Gregory-Newton  Formula  as  a  Special  Case  of  Newton's 
Formula.  —  The  Gregory-Newton  formula  may  be  regarded  as  the  special 
case  of  the  formula  of  the  last  section  when  the  intervals  of  the  argument 
are  equal. 

For  in  Newton's  formula  for  unequal  intervals  suppose  that  we  put 

By  constructing  a  table  of  divided  differences,  we  see  that 

In  the  same  way  we  find 

and  so  on. 

If  we  now  replace  u  by  a  +  xw,  the  formula  for  unequal  intervals  of 
the  argument  becomes 

f(a  +  xw)  =f(a)  +  X  ~          ~ 

which  is  the  Gregory  -Newton  formula. 

15.  The  Practical  Application  of  Newton's  Formula.  — 
In  laboratory  computation  from  Newton's  formula,  we  proceed 
by  a  method  which  is  really  identical  with  that  given  above 
(Ex.  §  13).  Rearranging  the  formula  of  §  13,  we  see  that 

,/H  =/K)  +  (u  ~  «o)  [/K>  «i) 

+  (u-  «!){/(«<,,  alt  a2)  +  (u  -  «2)(/(a0,  av  a2,  a3)  +  .  .  .)}]. 

This  equation  may  be  written  in  the  form 

f(u)  =/K)  +  (u  ~  «oK> where 
f  Vl  =/K    ttl) 
'••••• 

vr  =  ?-th  divided  difference  +  (u  -  ar)vr+1, 

•vn  =f(ao>  av  •  •  •>  an)>  a  constant. 

The  v's  are  computed  in  the  following  order :  vn-i,  vn-z,  •  •  •> 
v1.     The  value  of  f(u)  is  then  obtained  from  equation  (1). 



Entry. 

150 
121 

392 24 
265 1 

1452 
32 457 

1 
2366 

46 

917 
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Ex. — To  find  the  function  corresponding  to  the  argument  6-417  in 
the  following  difference  table  : 

Argument. 

a0=    5 

a1=  7 

«2  =  1 1 

a3=13 

«4=21  9702 

w  =  6-4l7,     »3=1,      r2=24+(6-4!7- 11)1  =  19-417, 
v1=121  x  (6-417 -7)19-417  =  109-679889, 

.-.  /(6-417)=  150  +(6-417  -  5)109-679889 
=  305-416402713. 

16.  Divided  Differences  with  Repeated  Arguments. — The 
original  definition  of  divided  differences  presupposes  that  the 

arguments  concerned  are  all  different.  If,  however,  the 

quantity  /(&0,  a0  +  e)  tends  to  a  definite  limit  as  e  tends  to  zero, 

we  denote  this  limit  by  f(a0,  a0),  and  similarly  for  divided 
differences  of  higher  order. 

Now  suppose  that  in  §  13,  u  =  aQ.  Since  the  differences  of  order 

3  are  supposed  constant,  we  see  that  f(a0,  aQ,  av  «2)  is  equal  to 

f(aQ,  av  a2,  a3),  and  the  remaining  differences  f(a0,  a0>  a^,f(aQ,  a0) 
may  then  be  calculated  just  as  in  the  general  case  when  u  and  a0 

were  supposed  different.  "We  may  now  form  another  set  of 
differences  by  again  taking  u  =  a0.  Kepeating  this  method,  we 
obtain  the  following  table  of  divided  differences : 
Argument.       Entry. 

aQ          /(«o) 
/K  «o)  /K>  «o>  «o>  «o) 

«o  /(«o)  /K>  «o.  ao) 

f(a0>  a0)  f(aQ,  a0,  a0,  aj 

a2          f(a2)  f(av  a2,  a3) 
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In  terms  of  these  divided  differences  with  repeated  arguments 

the  formula  of  Newton  becomes 

/(u)  =/(a0)  +  (u-  «0)/K,  a0)  +  (u  -  a0Yf(a0,  «0>  «0) 

+  (u  -  a0)3/K-  «o>  °o>  «o)  +  •  •  • 

This  formula  will  be  used  later  to  obtain  an  expression  for 

the  derivatives  of  a  function  in  terms  of  its  divided  differences.* 
a;      5      11       27          34          42  „    ,    ,,  . 

Ex.— Given  the  values^  ̂   QQQ  mi5  356Q6  6851Q  « 
MI  terms  o/  powers  of  (x  -  3).  • 

Constructing  a  table  of  divided  differences  and  extending  it  to  include 

repeated  arguments  for  x  =  3,  we  obtain 

X. 

42 /(»)• 68510 
4113 

34 35606 100 

2613 1 
27 

17315 69 

1026 1 

11 899 40 
146 1 

5 
23 16 

18 1 

3 

-  13 

8 
2 1 

3 

-  13 
6 

Applying  Newton's  formula  for  repeated  arguments,  the  required 

value  is  /(z)  =  -  13  +  2(x  -  3)  +  G(x  -  3)2  +  (a;  -  3)3. 

17.  Lagrange's  Formula  of  Interpolation.—  Let  f(x)  be 
the  polynomial  of  degree  n  which  for  values  a0,  al}  a2,  .  .  .,  an 

of  the  argument  x  has  the  values  /(«<,)>  f(ai)>  •  •  •  >  f(an)  re- 
spectively. By  the  definition  of  divided  differences,  we  have 

f(a0,  alt  a2,  .  .  .,  an,  x) 

(x  -  a0}(x  -  a^)  •••(x-an)     K  ~  x)  (ao  -  «i)  •  •  •  (#o  ~  an) 

(ax - x)(a1  -a0) ...  (^ -  an) 
_      ___ 
(an  -  x)  (an  -  aQ)  .  .  .  (an  -  an  _  i) *  §37. 
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Since  f(x)  is  a  polynomial  of  degree  n,  its  divided  differences  of 

order  (n  + 1)  are  zero,  i.e. 

/K>  al  tt2>  •    •    •    an>  «)  =  0. 

Arranging  the  factors  of  the  denominators  in  the  above 
fractions  so  that  the  first  factor  in  each  denominator  is  of  the 

form  (x  -  af),  we  obtain 
A*)   

(x  -fl.0)(aj-«1)  .  .  .  (x-an) 

(x  -  aQ)  (a0  -  a^  (a0  -az).  .  .  (a0  -  an) 

_  /K) 
(x-a1)(a1-a0)  .  .  . 

f(an)  ,  .  v 

(x  -  an)(an  -  a0)  .  .  .  (aw-aw_i)' 

which  is  Lagrange's  formula  in  a  form  suitable  for  computation.* 
Another  way  of  writing  this  formula  is  obtained  by  multi- 

plying both  sides  of  equation  (A)  by 

(x-aQ)(x-al)(x-a2)  .  .  .  (x-an), 
when  we  obtain 

,          (x-a^(x-a^  .  .  .  (x-an)    „    . 

/w~K-«i)K-«a)-  •  .  K-««r°J 
(a;  —  a0)  (x  —  a2)  .  .  .  (x  —  an)    ,,    * 

,  (al-a0)(a1-a2)  .  .  .  (ai-a^J 
•  •  •  •  • 

(x-a0}(x-al)  .  .  .  (a;-aM-i)     f(    .  ,~ 
+  7  -  w  -  \  -  1  -  \T\an}'  (&) 

(an-a0)(an-a,1)  .  .  .  (an-an_1y 

It  is  important  to  note  that  when  a  set  of  experimental  data  obey  a 
law  which  can  be  expressed  algebraically  as  a  polynomial  of  degree  n, 
then  not  less  than  (n  +  1)  observations  are  required  in  order  to  construct 
the  polynomial.  If  only  n  values  were  used,  the  resulting  polynomial 
would  be  of  degree  (n  -  1).  Before  applying  the  Lagrange  formula  it  is 
therefore  necessary  to  ascertain  the  order  of  the  divided  differences  which 
are  of  constant  value  and  thus  find  the  proper  value  for  n. 

Ex.  I.  —  Given  the  values  „  .   6g>^  64>Q  44>Q  3'Q-1  to  calculate  the  value 
of  f(x)  corresponding  to  x  =  27. 

*  Lagrange's  formula  was  first  published  in  his  Lemons  dUmentaires  sur  Us 
matlilmatiques,  in  1795,  reprinted  in  his  (Euvres,  7,  p.  286. 
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Applying  formula  (A),  we  obtain 

  /(27)   

(27  -  14)  (27  -  17)  (27  -  31)  (27  -  35) 

68-7 
(27  -  14)  (14  -  17)  (14  -  31)  (14  -  35) 

64-0 
+  (27-  17)  (17-  14)  (17 -31)  (17 -35) 

44-0 *  (27  -  31)  (31  -  14)  (31  -  1 7)  (3 1  -  35) 

39-1 f  (27  -  35)  (35  -  14)  (35  -  17)  (35  -  31) 

/(27)  _        68-7        64-0      44-0  _    39-1 

4160 ~    ~  13923  +  7560  +  3808  ~  12~096' 

/.  /(27)  =  49-317  (approx.). 

The  required  value  is  49-3. 

Ex.  2. — Given  the  data  .,  1    „,  to  form  the  cubic  function  of  x. 
J\3C)  ••*    <5     J. ̂ i     A ~t  i 

Applying  formula  (B),  we  have 

=  (z-l)(s-2)(a!-5)         a<a;-2)(a-6)         x(x  -  1)  (x  -  5) 

A}     (0-1)  (0-2)  (0-5)        1(1 -2)  (1-5)        2(2-1)  (2 -5)   ' 
-- 

5(5-1)  (5  -2) 

=  a;3  +  xz  -  x  +  2. 

18.  An  alternative  proof  of  Lagrange's  formula  by  the 
use  of  determinants  is  the  following  : 

Let  Pn  denote  a  polynomial  of  degree  n,  and  put 

Substituting  in  succession  the  values  a0,  av  .  .  .,  an  for  x,  we 
obtain 

f(a0)  =  A /(aj  =  A  +  Bax  +  C^2  +  .  .  ,  +  La^, 

(an)  =  A  +  ~Ban 
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Eliminating  A,  B,  C,  .  .  .  from  these  equations  determinant- 
ally  we  have 

0  = 
'o)  /K)  /K)  •  •  •  /K) 
11  i 

X 

X2 

..  ft,, 
ft* 

ft, 

xn     a0n 

Expanding  this  determinant  according  to  the  elements  of  the 
first  row,  we  see  that 

1     1    ...  1 
=/(«o) 

1    1    ...  1 
G/Q        Ct>i      •    •    •    Ctn 

on                                 9 

a0J    a^  .   .  .  «„ 

97         0/j      •     •     •    fl^Tj 

«;«  «;-  .  :  .  «:» ™W          /y    W                            /y     71 
ii/             (.{•-]          •      •      t      f  ''?) 

(«o i  i  i  ...  i +.  .  .+(-DVU 
X         tt0        «2      •    •    •    an 

•                      •                     •                      •                      • 

/vj?i       rt   ̂        fi   'li                     n    n 
t/U               **Q               tC-Q          .        .        ,       tt'yj 

i     i     ...  i 

(1, 

The  determinants  in  this  equation  may  be  represented 

as  difference -products.  The  coefficient  of /(ft0)  is  the  differ- 
ence-product of  x,  av  .  .  .,  an,  the  coefficient  of  /(ftj  is  the 

difference-product  of  x,  a0,  «2,  .  .  .,  an,  and  so  on.  We  may 
write 

1    1    ...  1 
a0    ax    .  .  .  an 

— 1        1         1       ...    1 

ft         fl        ff                    CL 

+ 1        1        1       ...   1 

an   a  n              ann yyTlyyttyyTl                        ft      fl /y7l/-/W/yH                      /Tf" 

2              0              1        •     •     •     t-vji 

i.e.  the  coefficient  of  ~Pn  is  equal  to  the  difference-product  of 
fta,  ftj,  .  .  .,  ftn :  it  is  also  equal  to  minus  the  difference- 

product  of  av  aQ,  az,  .  .  .,  an,  or  to  plus  the  difference-product 

of  ft2,  ft0,  ftj,  .  .  .,  an,  and  so  on.  If  we  now  divide  through- 
out by  the  coefficient  of  Pn  in  equation  (I),  we  obtain  the 

result : 
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p         f, 

71    yi  o 

+/K); (a?  -  g0)  (a?  -  a2)  (a;  -  fl8)  .  .  .  (x-an) 

!  -  a0] ((«!  -  «2) (ax  -  as)  .  .  .  (a^-a 

(x  -  a0)  (x  - 

n'(an-a0)(an-a1)  .  .  .  (an-«n-i)' 

which  is  the  formula  required. 

There  is  an  infinite  number  of  functions  of  x,  each  of  which  has  the 

values  /(a0),  /(e^),  .  .  .,  /(<%)  at  «0,  alt  .  .  .,  an  respectively.  In  the 
practical  applications  of  mathematics,  however,  we  consider  only  functions, 
such  that  if  a0,  alt  .  .  .,  an  are  sufficiently  close  together,  any  one  of  the 
functions  may  be  represented  with  tolerable  accuracy  by  the  polynomial 
Pn,  for  the  range  of  values  included  between  aQ,  aT,  .  .  .,  an.  The 
formula  may  thus  be  used  for  interpolation. 

19.  The  Remainder  Term  in  Lagrange's  Formula 
of  Interpolation.* — Let  f(x]  be  a  function  of  the  real 
variable  x  defined  in  an  interval  to  which  belong  the  values 

x0,  xv  .  .  .,  xn,  and  possessing  in  this  interval  the  derivative 
of  order  n. 

Consider  the  function  g(x],  where 

f(x] 
-PI™  \ 

J  v^o; 

x 
n 

w-l 

71-1 

X 

Xn 

X n-l 

The  determinant  vanishes  for  the  values  x0,  xv  .  .  .,  xn.  By 

the  differential  calculus  we  see  that  since  g(x)  vanishes  for 

(n  + 1)  values  of  x,  its  derivative  g'(x)  vanishes  for  n  values  of 
x.  the  second  derivative  for  (n-\]  values,  and  so  on;  the  nih 

derivative  vanishing  for  one  value  of  x  in  the  interval.  Thus 
there  exists  a  value  x  intermediate  between  x0,  xlt  .  .  .,  xn  such 

that  (fin\x)  =  0. 
Forming  the  nth  derivative  of  the  determinant  by  differ- 

entiating the  variable  elements  of  the  first  row,  we  have  : 

*  Pcano,  Scritti  offcrli  ad  E.  D"  Ovidco  (Turin,  1918),  p.  333. 
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fn(x)     nl      0 
f(x0)     V 

xnn 

...  0       0 

.  .  .  x 

=0. 

If  we  expand  this  determinant  according  to  the  elements  of 
the  first  column  and  solve  for  f(x0)  in  the  resulting  equation, 
we  find 

(rvt       __   /yi     \   / /•yi           /j-»    \  //y.  «•,     \ 

^0        ̂ 2}  \^Q        ̂ 37     '     '     '     ̂ 0  ""  ̂ nj  //„  \ 
y  v  ov  —  T^        w          \ —      — / —      — v  \  i/ I w-i   ~~  tX./o /  \  ̂i         ̂ oj     •     •     •      (&-I  ~~  ̂ v«  I \      1.  £tl   \     X  o/  \     1  11 1 

|  (^0-^1)^0-^3)  •  •  •  fco-a 
^2  ~  ̂'ij  (,"^2  ~  Xs)    •    •    •    (X2  ~  3- (  2) 

(XQ  -  Xj)  (XQ  -  X2)      .      .      .       (ff0-%n-l) 

(^0  —  ff]j  (^o  —  ̂2)    •    •    •    \X0  ~  ̂ M) 
nl 

where  x  is  some  number  intermediate  between  x0, 

This  is  Lagrange's  formula  with  a  remainder  term. 

EXAMPLES  ON  CHAPTER  II 

1.  If /(x)  =  -g,  find  the  divided  differences/^,  &),/(«',  6,  c),  and /(a,  6,  c  d\ 
•Ju 

2.  If  /(x)  =  g(x)  +  h(x\   where    g(x)  =  x*    and     h(x)  =  x3,     verify    that 
,  7,  11,  13)  =  0(5,  7,  11,  13)  +  A(5,  7,  11,  13). 

3.  Given  the  values 

a;  4  5  7  10  11  13 

f(x]          48  100          294  900  1210          2028 

form  the  table  of  divided  differences  and  extend  it  to  include  the  values 
of  the  function  for  x  =  3  and  x  —  1 4. 

4.  Find  the  function  f(x)  in  each  of  the  following  cases  : 

(a)  x     11     13    14     18    19    21 
f(x)   1342  2210  2758  5850  6878  9282 

(&)  x    16     17      19      23      29      31 
f(x)  65536  83521  130321  279841  707281  923521 

by  means  of  a  table  of  divided  differences. 
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5.  Calculate /(I),  given  the  values 

SB  0  2  3  6  7  9 

f(x)   658503   704969   729000   804357   830584   884736 

6.  Assuming /(x)  to  be  a  function  of  the  fourth  degree  in  x,  find  the 
value  of /(1 9)  from  the  values 

x  11  17  21  23  31 

f(x)      14646      83526      194486      279846      923528 

7.  The  values  of  a  cubic  function  are  150,   392,  1452,   2366,  and 
5202,  corresponding  to  the  values  of  the   argument  5,   7,    11,   13,   17 
respectively.     Apply  the  Lagrange  formula  to  find  the  function  when 

the  argument  has  the  values  9  and  6 "5  respectively. 

8.  Find  an  expression  for  the  function  in  each  of  the  examples  (6) 
and  (7),  using  the  Lagrange  formula  of  interpolation. 



CHAPTER  III 

CENTRAL-DIFFERENCE   FORMULAE 

20.  Central -Difference  Notations.  —  In  this  chapter  we 
shall  consider  certain  formulae  of  interpolation  which  employ 

differences  taken  nearly  or  exactly  from  a  single  horizontal  line 

of  the  difference  table.  In  order  to  express  these  simply  it  is 

convenient  to  modify  the  notation  of  the  calculus  of  differences. 

Several  systems  of  modified  notation  are  in  use.  One, 

which  we  shall  frequently  employ,  was  introduced  by  W.  F. 

Sheppard*  and  will  be  understood  from  the  following  difference 
table.  It  is  based  on  a  symbol  8  which  may  be  regarded  as 

equivalent  to  AE  ~ 2,  where  E  as  usual  denotes  the  transition 
from  any  number  to  the  number  next  below  it  in  the  difference 

table,  i.e.  E  =  1  +  A. 

Since    S  =  AE~^    and    therefore    A  =  SE^,    we    may    write 
"2  "2  IS 

Ee writing  the  ordinary  difference  table,  we  obtain 
Argument.        Entry, 

a  —  2w         u_2 
8u_s 

a  —  w  u_,  8zu  _  j 
8u  83u    , -1  -i a 

a  +  w 
Su 

If  we  suppose  each  row  of  the  difference  table  to  be  numbered  with 

the  suffix  p  of  the  corresponding  entry  up,  or,  in  the  case  of  a  row 
situated  midway  between  two  entries  up  and  up+l,  to  take  the  number 

p  + 1,  we  see  that  A2rM0,  the  differences  of  even  order  of  UQ,  are  repre- 
sented in  the  central -difference  notation  by  82run  since  they  are  situated 

*  Proc.  London  Math.  Soc.  31  (1899),  p.  459. 35 
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in  the  row  r.     The  differences  of  odd  order  A2r+1u0  are  represented  by 
the  expression  82r+1ur+±  since  they  lie  in  the  row  r  +  %. 

It  is  often  required  to  find  the  arithmetic  mean  of  two 

adjacent  entries  in  the  same  column  of  differences.  In  the 

8  system  of  notation  we  indicate  this  mean  by  the  symbol  //,. 

Thus  fj.8u0  is  denned  to  be  %(8u _  ̂  +  8u^),  p83u0  is  |(33w  _ ,  +  #X), 
and  so  on  for  the  mean  differences  of  the  other  entries.  The 

mean  differences  may  be  inserted  in  the  table  to  fill  in  the  gaps 

that  occur  between  the  symbols  of  the  quantities  from  which 

they  are  derived. 

In  another  notation  which  was  suggested  by  S.  A.  Joffe  *  the 
symbol  ̂   is  used  instead  of  8.  The  notation  is  illustrated  in  the 
following  difference  table  : 

Argument,      Entry, 
a  —  *2w         u_2 

A«-a 

a  —  w  u_i  A2M_j 

Zcy^-j  A3M_j. 
a  u0  &2uo  A4^Q 

AM$  A3«i 
a  +  w  MJ  A2«! 

Attj 
a  +  Zw         u2 

.21.  The    Newton -Gauss    Formula    of   Interpolation. - 
Suppose  that  a  f unction  f(a  +  xw)  is  given  for  the  values 

.  .  .  a  -  w,  a,  a  +  w,  a  +  2w,  .  .  . 

of  its  argument. 

If  in  the  Newton  formula  for  unequal  intervals  we  take 

aQ  =  a,  a1  =  a  +  w,  az  =  a  —  w,  a3  =  a  +  2w,  a^  =  a  —  2w,  and  so  on, 
and  denote  a  +  xw  by  u,  we  obtain 

f(u)  =f(a}  +  (u  ~  a)f(a>  a  +  w)  +  (u  -  a)  (u  ~  a  ~  w)f(a>  a  +  w,a-  w) 
+  (u  -  a)(u-a  —  w]  (u  —  a  +  w]f(a,  a  +  w,  a  —  w,  a  +  2?/7) 

+  (u  -  a)  (u  -  a  —  w}  (u  —  a  +  w)  (u  —  a  -  2w) 

f(a,  a  +  w,  a-w,  a  +  2vv,  a  —  2iv) 
+  (u-a)(u-a-  w)  (u  -  a  +  w)  (u-a-  2w)  (u  -a  +  2w) 

f(a,  a  +  w,  a-w,  a  +  2iv,  a  -  2w,  a  +  3w). 
+  •  '  •  (1) 

*  Trans.  Act.  Soc.  Amer.  18  (1917),  p.  91. 
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The  divided  differences  contained   in   this  equation   may  be 
written  in  the  ordinary  notation  of  differences  as  follows  : 

f(a,a  +  w)=- 

f(a,  a  +  w,  a  -  w)  = 

f(a,  a  +  iu,a-  w,  a  +  2w)  =  ̂ -3A3/(a  -  w), 
etc. 

Equation  (1)  thus  takes  the  form 

f(a  +  xw)  =f(a)  +  *A/(«)  +          -?  A2/(«  -  w) 

(x  +  l)x(x  -  1)  (x  -  2)  .  4  .,       0   . ^  v  —  A4/(a  -  2w) 

/AN 
(A) 

This  formula,  which  is  one  of  the  group  of  formulae  known  to 
Newton,  is  often  called  the  Gauss  formula. 

The  differences  used  in  this  formula  are  as  nearly  as  possible  in  the 
horizontal  line  through  /(a)  in  the  original  difference  table.  The  formula 
is  therefore  convenient  for  use  when  the  value  of  the  argument  for  which 
the  function  is  required  is  near  the  middle  of  the  tabulated  values.  This 

formula  may  be  represented  more  simply  by  using  the  symbol  (ri)r  to 
denote  the  binomial  coefficient 

n(n  -  1)  (n  -  2)  .  .  .   (n  -  r  +  1) 

~^T 

so  that  
it  may  

be  
written 

/(a  +  xw)  =/(a)  +  xA/(a)  +  (z)2A2/(a  -  w)  +  (x  +  l)3A3/(a  -  w) .  .  .     (B) 

22.  The  Newton-Gauss  Backward  Formula.—  From  the 
formula  of  the  last  section  another  may  be  derived  which 

is  often  used  when  x  is  measured  in  a  negative  direction 

from  f(a),  i.e.  towards  decreasing  values  of  the  argument. 

Suppose  we  write  f(a  -  xw)  in  the  form  f{a  +  x(-  w}}  and  change 
the  sign  of  w  in  the  discussion  of  the  last  section.  The 
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order  of  the  arguments  and  corresponding  entries  is  then 

reversed.  Instead  of  A/(a)  in  the  Newton-Gauss  formula  we 

now  have  f(a-  w)  -/(«•),  or  -A/(«-w);  A3/(«  -  w)  in  the 
above  formula  becomes  -  A3/(a  -  2w)  ;  A5/(&  -  2w)  becomes 

-  A5/(a  -  3w),  and  so  on.  We  thus  obtain  the  formula 

f(a  -  xw}  =f(a]  -  xhf(a  -w)  +  (x)^f(a  -  w)  -  (x  +  l)3A3/(«  -  2w) 
+  (x  +  l)4A4/(a  -  2w)  -(x+  2)5A5/(a  - 

which  has  been  called  the  Newton-Gauss  formula  for  negative 
interpolation,  or  the  Newton-Gauss  backward  formula. 

23.  The  Newton-Stirling  Formula.  —  In  the  Gauss  formula 

f(a  +  xw)  =f(a)  +  a?A/(a)  +  %x(x  -  1)  A2/(a  -  w] 
+  l(x  +  l}x(x  -  l)A3/(a  -  w) 
+  ̂ (x  +  l)x(x  ~  1)  0»  ~  2)A4/(«  - 

the  terms  may  be  rearranged  thus  : 

f(a  +  xw)  =f(a)  +  x{kf(a)  -  ±tff(a  -  w}}  +  ~f(a  -  w) 

Suppose  we  replace  the  differences   of  even  order  within  the 

brackets  by  differences  of  odd  order,  using  the  identities 

(a  -  w)  =  A/(«)  -  A/(a  -  w), 

A4/(a  -  2w)  =  A3/(a  -w)-  A3/(a  -  2w), 
and  so  on.     We  obtain  the  result 

,,  \      /•/  \       A/(«)  +  A/(«  -  w)     xz  .„„,         > 
f(a  +  xw)  =f(a)  +  x^-±-t  —  ̂ p—    -I  +  wAzf(a  -  w) 

x(x2  -  I2)  (s2  -  22)     A5/fo  -  2«;)  +  A5/(a  - 

5!  ^~ 

(A) 
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This  formula,  which  was  first  given  by  Newton,*  was  after- 
wards studied  by  Stirling  f  and  is  called  the  Newton- Stirling 

formula. 

The  mean-differences  i  { A/(«)  +  A/(a  -  iff) } ,  i  { A3/(«  -  2 10)  +  A3/(«  -«>)}, 
etc.,  are  completely  symmetrical  with  regard  to  increasing  and  decreasing 
arguments.  This  fact  enables  us  to  express  the  formula  very  concisely 

by  means  of  the  central-difference  notation  of  §  20  : 

5! 

where  fjiSu0  =  -^(8«_  j  +  Sttj), 

and  so  on. 

24  The  Newton-Bessel  Formula.—  In  the  Newton-Gauss 
formula 

f(a  +  xw)  =/(«.)  +  zA/(«)  +  lx(x  -  l)A2/(a  -  w) 

+  \(x  +  l)x(x  - 
+  J-4  (»+  I)a;(a5  - 

let  us  substitute  for  i/(a),  iA2/(«-w),  -iA4/(«-2w),  etc.,  their 
values  obtained  from  the  identities 

A2/(«  -  w)  =  A2/(«)  -  A8/(a  -  10), 
A4/(a  -  2w)  =  A4/(a  -  w]  - 
etc. 

The  above  equation  becomes 

/(«  +  xw)  =  |{/(a)  +/(«  +  w)}  +  (*  - 

(a;  +  l)g(a;  -  1)  (g  -  2)  i  _  *      -  w)}  +  .  .  .  (A) 

which  is  symmetrical  with  respect  to  the  argument  (a  +  ̂  
This  formula,  which  was  first  given  by  Newton  \  and  later 

used  by  Bessel,  is  called  the  Newton-Bessel  formula. 
*  Newton,  Mcthodus  Di/ercntialis  (1711),  Prop.  iii.  Case  i. 
f  Stirling,  Methodus  Differentials  (1730),  Prop.  xx. 
f  Methodus   Differentialis   (1711),    Prop.   iii.    Case  ii.  ;    Stirling,    Mcthodus 

Diffcrentialis  (1730),  Prop.  xx.  Case  ii. 
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If  in  this  formula  we  write  x-\=y,  it  becomes 

f(a  +  i  w  +  yw)  =  i  {/(«,)  +f(a  +  w)}  +  7/A/(rt) 
—  i 

(a  -  w) 

(B) 

25.  Everett's  Formula.  —  When  it  is  required  to  inter- 
polate between  /(«)  and  f(a  +  iv)  in  the  construction  of  tables 

by  the  subdivision  of  intervals,  statisticians  frequently  use  a 

formula  due  to  Everett,*  which  is  generally  written  in  the  form 

where  ux  denotes  f(a  +  xw],  and  £  denotes  (1  -x),  and  where  as 

usual  S2  denotes  A2E  -  \  Thus  for  u^,  »  =  i,£  =  l-f  =  i. 
This  formula  involves  only  even  central  differences  of  each 

of  the  two  middle  terms  of  the  series  between  which  the 

interpolation  has  to  be  made. 

To  prove  this  formula  we  eliminate  from  the  Newton-Gauss 
formula 

f(a  +  xw)  =f(ci)  +  zA/(«)  +  (z)2A2/(«  -  w)  +  (x+  l)3A3/(«  -  w) 
+  (x+  l)4A4/(«  -  2w)  +  (x  +  2)5A5/(«  -2w)  +  .  .  . 

the  differences  of  odd  order  by  means  of  the  relations 

AA«)  =/(«  +  w)  -/(«),     Ay(«  -  w)  =  A2/(«)  -  A2/(«  -  w), 
A5/(«  -  2w)  =  A4/(r6  -  w)  -  A4/(«  -  2w)  .  .  . 

The  Newton-Gauss  formula  becomes 

f(a  +  xw}  =f(a)  +  x{f(a  +  w)  -/(«)}  +  (x)z^/(a'  ~  w) 
+  (x+  l)3{A2/(a)  -  A2/(«  -w)}  +  (x+  l)4A4/(«  -  2io) 
+  (x  +  2)5{A4/(a  -  w)  -  A4/(a  -  2w)}  + .  .  . 

Using  the  relation    (p  +  l)q+1  =  (p)q+1  +  (p)q,  this   equation 
may  be  written 

*  Brit.  Assoc.  Rep.  (1900),  p.  648  ;  J.I.  A.  35,  p.  452  (1901).    Tables  of  the  co- 
efficients iu  this  formula  have  been  published  in  Tracts  for  Computers,  No.  V. 
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/(«  +  xw)  =  (1  -  x)f(a)  +  xf(a  +  w}  +  (x  +  l)3A2/(«)  -  (z)3A2/(a  -  w) 
+  (x  +  2)5A4/(«  -  w)  -(x  +  l)5A4/(«  -  2w)  + .  .  . 

Introducing  central  differences  and  rearranging  the  terms, 

f(a  +  xw}  =  (1  -  x}f(a}  -  (x)3S*f(a)  -(x  +  l 

+  xf(a  +  w}  +  (x  +  l)382f(a  +  w)  +  (x 

If  we  now  transform  the  coefficients  of  f(a)  by  means  of  the 
relation  !-&  =  £  so  that  (x)3=  -(£  +  l)3,  (x+l)5=  -(£  +  2)5> etc.,  we  have 

f(a  +  xw}  =  £f(a}  +  (£  +  l}^f(a}  +  (£  +  2)^f(a)  +.  .  . 

+  xf(a  +  w)  +  (x  +  l)38*f(a  +  w)  +  (x  +  2)534/(rt  +  w)  +.  .  . 

which  is  Everett's  formula  for  equal*  intervals  of  the  argument. 
26.  Example  of  Central-Difference  Formulae.— The  follow- 
ing example  illustrates  the  application  of  the  various  central- 

difference  formulae : 

To  compute  the  value  of  logw  cosh  0'3655,  having  given  a  table  of  values 
of  loglo  cosh  x  at  intervals  0*002  of  the  argument. 

Forming  the  difference  table,  we  see  that  the  differences  of  the  third 
order  are  approximately  constant.  The  differences  of  the  fourth  order 
will,  however,  be  taken  into  account  since  such  a  difference  may  affect 
the  accuracy  of  the  last  figure  of  the  result. 

Argument. 
0-360 

0-362 

0-364 

0-366 

0-368 

0-370 

Entry. 

0-0275  5462  3980 

278  5523  7805 

281  5737  9665 

284  6104  7438 

287  6623  8989 

290  7295  2180 

30061  3825 

30214  1860 

30366  7773 

30519  1551 

30671  3191 

152  8035 
-2122 

1525913  -13 
-2135 

1523778  -3 
-2138 

152  1640 

In  Everett's  formula  put  o;  =  f,  £  =  |-,  and  «0=0-0281  5737  9665. 

/(0-3655)  =  1(281  5737  9665)  + (-T-^)(152  5913) +  g^(- 13) 
+  f(284  6104  7438) +  (-^5 (152  3778)  +  ̂ ^  (- 3) 

=  283  8513  0494-75  -  14  2937-59  -  0-13  =  283  8498  7557-03. 

.-.  log  cosh  (0-3655)  =  0-0283  8498  7557. 

*  Corresponding  formulae  for  unequal  intervals  have  been  given  by  R.  Tod- 
hunter,  J.I.  A.  50  (1916),  p.  137,  and  by  G.  J.  Lidstone,  Proc.  Edin.  Math.  Soc. 

40  (1922),  p.  '2Q. 
(D  309)  D 
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In  the  Newton-Bessd  fornuila  put  x  =  \. 

/(0-3655)  =  $        HI  HI]  »H      +  1(30366  7  773) 

=  2830921  3551-5  +  7591  6943-25  -  142954-27  +  16-68  -  0-14 
=  283  8498  7557-02. 

.-.  log  cosh  (0-3655)  =  0-0283  8498  7557. 

By  the  Newton-Gauss  formula 

/(0-3655)  =  281  5737  9665  +  f(30366  7773)  +  (-  -A)  (152  5913) 

=  281  5737  9665  +  2277  50829-75  -  14  3054-34 

+  116-76-0-22 
=  283  8498  7556-95. 

.-.  log  cosh  (0-3655)  =  0-0283  8498  7557. 

By  the  Newton-Stirling  formula 

/(0-3655)  =  281  5737  9665  +  f-  *         *  ™«       +  ̂ (152  5913) 

=  281  5737  9665  +  2  2717  8612-38  +  42  9163-03 
+  116-40  +  -13 

=  283  8498  7556-94. 

.-.  log  cosh  (0-3655)  =  0-0283  8498  7557. 

27.  The  Formulae  of  the  preceding  Sections  may  be 
expressed  more  concisely  by  means  of  the  Central- 
Difference  Notation  of  §  20. 

Everett's  formula  : 

!  +  (x  +  2 
The  Newton-Bessel  formula 

ux  = 

, 
(X  ,  —-  ,      .   .   . 

a;  _  i 

.  .  .  +  (x  +  r  -  l}Zr^Zrui  +  (x  +  r- ^?'  +  J.  2 

The  Newton-Gauss  formula  : 

ux  =  w0  +  a;8w,  +  (x)282i(,0  +  (a?  +  l^S3*^  +  (a;  +  I 
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The  Newton- Stirling  formula : 

43 

0 

+  |{(a  +  r)*.  +  (a?  +  r  -  I)2r}82ru0  + 

Newton-Gauss  backward  formula  : 

u_x  =  UQ  -  x8u.i  +  (z)2S2«0  -  (x 

4! 

28.  The  Lozenge  Diagram.  —  We  shall  now  give  a  method 
which  enables  us  to  find  a  large  number  of  formulae  of 
interpolation. 

pi 

— 
Let  (p)q  denote  the  quantity ,  and  let  ur  denote  the 

entry  f(a  +  rw}.     We  obtain  at  once  the  relations 

(i) 
(2) 

and,  combining  these  equations,  we  see  that 

.r}  =  {(p  + 
or 

_r.  (3) 

Suppose  we  arrange  these  terms  in  the  form  of  a  "  lozenge  "  so 
that  the  terms  on  the  left-hand  side  of  the  equation  lie  along 
the  two  upper  sides  of  the  lozenge  and  the  terms  of  the  right- 

'q-H 

q+i 

A 

•A   u 

FIG.  2. 
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hand  side  along  the  lower  sides.  We  obtain  the  above  diagram 

in  which  a  line  directed  from  left  to  right  joining  two  quantities 
denotes  the  addition  of  those  quantities. 

Equation  (3)  may  be  expressed  by  the  statement  that  :  in 

travelling  from  the  left-hand  vertex  to  the  right-hand  vertex  of 
the  lozenge  in  the  diagram,  the  sum  of  the  elements  which  lie 

along  the  upper  route  is  equal  to  the  sum  of  the  elements  which  lie 
along  the  lower  route. 

It  is  evident  that  this  statement  may  be  extended.  For 

example,  let  us  place  in  contiguity  the  lozenges  correspond- 
ing to 

p  =  n-  1 

so  that  the  upper  vertices  of  the  lozenges,  which  are  of  the  form 
_r,  form  a  sort  of  difference  table  : 

(n  -  1)^ 

We  obtain  the  following  diagram  : 

(n-i),  Au, 
FIG.  3. 

Applying  the  rule  given  by  equation  (3),  it  is  evident  that 
the  sum  of  the  elements  along  either  of  the  following  routes  is 
the  same : 

1  +  (n  +  l)2A2«t_1+  (w  +  l 
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Since  MO+ (w)1AM0  =  w1+(w-l)1Aw0,  we  may  form  three 
other  expressions  beginning  with  the  term  u{  instead  of  u0  and 

equivalent  to  those  already  given,  namely, 

Wj  +(n-  l)]Aw0  +  (?z.)2A2w_1  +  (n  +  l)3h?u_1 
and  two  similar  expressions. 

If  we  examine  the  structure  of  this  diagram,  it  will  be  seen 

that  the  values  of  q  and  r  in  the  expression  (p)q&?u_r  are 

arranged  in  precisely  the  same  way  as  for  the  differences 

A9/(w  -  no)  in  an  ordinary  difference  table.  The  values  of  p  are 
constant  along  any  diagonal  descending  from  left  to  right  of 

the  diagram,  while  along  a  diagonal  ascending  from  left  to  right 
these  values  increase  by  unity  at  each  vertex.  The  first  value 

of  p  along  either  line  radiating  from  UQ  is  taken  to  be  p  =  n. 
By  extending  this  diagram  we  arrive  at  the  following,  which 

FIG.  4. 
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may  be  called  a  lozenge  or  "  Fraser"  diagram  since  it  is  a 
modification  of  one  due  to  D.  C.  Eraser.* 

Now  the  Gregory-Newton  formula  for  un  is  the  sum  of  the 
elements  from  UQ  along  the  downward  sloping  line  to  the  line 

of  zero  differences.  So  un  =  the  sum  of  the  elements  from  u0 
along  any  route  whatever  to  the  line  of  zero  differences. 

Erom  the  identity  u0  +  n&u0  =  u1  +  (n  -  1)  Aw0  it  is  evident 
that  the  value  of  un  is  unaltered  if  a  route  is  selected  starting 

from  u^  instead  of  from  u0.  In  general  the  sum  of  the  elements 

along  any  route  proceeding  from  any  entry  ur  whatever  to  the 

line  of  zero  differences  is  equal  to  un. 

Applying  this  rule,  we  have  at  once  from  the  lozenge  diagram 

«»  =  uo  +  (n\&u  _  i  +  fa  +  1  )2A2«  -  2  +  0  +  2)3  A3w  _  3 
+  (?i  +  3)4A4u_4  +  .   .  .      (4) 

«»  =  «o+  OOiAtt.j.  +  (n  +  l)2A2tt_!  +  (n  +  1)3A3M_Z 
+  (w  +  2)4A4it_2  +  .  .  .     (5) 

un  =  uo  +  (n  )iA«0  +  (W)2A2«  _i  +  (»+l  )sAait  -  1  +  (n  +  1  )4A4«  _  2  +  .  .  .       (6) 

un  =  Ui  +  (n-  1)^0+  («)2A2tt0  +  (w)3A3M_  !  +  (»  +  l)4A4-w_1  +  .  .  .         (7) 

Rewriting  equations  (5),  (6)  in  the  central-difference  notation,  we  find 

un  =  UQ  +  (rij-fiu  _$  +  (n+  1  )2S2  «0  +  (n  +  1  )383u  _  j  +  (n+  2)4S4«0  +  .  .  . 
and 

7tn  =  «0  +  (TO^SMJ  +  (n)232M0  +  (n  +  l)383«j  +  (w  +  1)4S4«0  +  .  .  . 

which  is  the  Newton-Gauss  formula. 
If  we  now  take  the  mean  of  these  values  of  «„,  we  obtain  the  formula 

whose  differences  are  along  the  row  corresponding  to  u0  : 

un  =  uo  +  (n)i  ̂ 'u  -  *  +  <^)  +  -3-  {  (»  +  1  )2 

which  is  the  Newton-Stirling  formula. 
The  mean  value  of  un  from  equations  (6),  (7)  may  be  expressed  either 

as  Everett's  formula  or  as  the  Newton-Bessel  formula.  Writing  (6),  (7) 
in  the  central-difference  notation, 

un  =  U0 

+  (71  +  r  -  !)2rS^tt0  +  (n  +  r)2r+1S2^+1MJ  +  .  .  .      (8) 

+  (n  +  r-  IVSa^  +  (n  +  r  -  l)2,+1S2'-+1«j  +  .  .  .     (9) 
Taking  the  arithmetic  mean  of  these  values  of  un,  we  may  eliminate 

*  J.I.A.  43  (1909),  p.  238. 
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differences  of  odd  order  by  applying  the  relations  (p)q  =  (p+  1),7  +  1  -  (p)q+l 

and  82'-+1(t.  =  S2rM1-82rM0.  The  coefficient  of  S2'"^  takes  the  form 

1  {  (n  +  r  -  l")2r  +  (n  +  r)2r+1  +  (n  +  r-  l)2r+1  }  or  (n  +  r)2,+1.  The  co- 
efficient of  &ZruQ  becomes  1  {  (n  +  r  -  l)2r  -  (n  +  r)2r+1  -(n  +  r-  l)2r+i} 

or  -  (n  +  r  -  l)2r+i,  and  by  substituting  £  for  (1  -  n)  we  see  that 

The  arithmetic  mean  of  equations  (8),  (9)  may  thus  be  written  in  the  form 

which  is  Everett's  formula. 

Suppose,  however,  we  find  the  arithmetic  mean  of  the  values  of  un 

in  (8)  and  (9)  and  simplify  the  coefficients  of  differences  of  odd  order  in 

the  resulting  expression  by  means  of  the  relation 
n  —  ̂  

We  now  obtain  the  result 

Wl  (  ff)    _    "I    ]   (  -M     -        J-    [ 
3         (n  + 

n  — 

which  is  the  Newton-Bessel  formula. 

29.  Relative  Accuracy  of  Central-Difference  Formulae.— 
It  is  frequently  necessary  to  use  approximate  formulae  which 

terminate  before  the  column  of  zero  differences  is  reached.  From 

the  last  section  we  have  seen  that  the  sums  of  the  elements  along 

any  two  routes  which  terminate  at  the  same  vertex  are  identical. 

If  the  routes  terminate  at  two  adjacent  vertices  (p)q^u_r+1  and 

(p)q&iu_r  which  are  in  the  same  "lozenge,"  the  sums  of  the 
elements  along  these  routes  differ  by  (^)(y(A%_r+i  -  A^_r),  i.e. 

by  (p)3A9+1w_r.  Extending  this  result  to  routes  terminating  in 

the  same  column  of  differences,  for  example,  at  A%_3  and  A4w0, 
it  is  evident  that  the  sums  of  the  elements  along  these  routes 

differ  by  (n  +  2)4A5-w  _3  +  (n  +  l)4A5w_2  +  (n)^u_v 
We  shall  now  consider  routes  that  lie  along  horizontal 

lines  ;  these  yield  the  formulae  containing  mean-differences.  In 
the  last  section  it  was  shown  that  a  mean-difference  formula  is 

obtained  by  taking  the  arithmetic  mean  of  the  elements  along 

two  adjacent  routes.  From  the  mode  of  formation  we  see  that 

the  sums  of  the  elements  along  such  routes  are  identical  as  far 
as  the  vertices  at  the  intersections  of  the  routes.  For  example, 

the  Newton-Gauss  formula  is  equivalent  to  the  Newton-Stirling 



48  CENTRAL-DIFFERENCE  FORMULAE 

formula  as  far  as  differences  of  even  order,  and  it  is  also 

equivalent  to  the  Newton-Bessel  formula  as  far  as  differences 
of  odd  order.  When  a  formula  is  curtailed,  the  question  arises 

as  to  whether  it  is  more  advantageous  to  select  a  route  which 

terminates  at  a  mean  difference  or  at  an  ordinary  difference. 

The  following  diagram  represents  the  portion  of  the  lozenge 

diagram  along  the  row  corresponding  to  UQ  and  adjacent  to 
the  differences  of  order  2r.  Let  A  denote  the  mean  differ- 

ence (n  +  r)zr+1[j!.8Zr+lu0,  and  let  B  denote  the  mean  difference 

(n  +  r  -  l)2r/xS2'wi. 

(n+r)r 

•(n+r)    1  >  (n+r+i) 'ar        2r        /  A  2r+2 

FIG.  5. 

The  route  along  the  dotted  line  through  A  represents  the 

Newton-Stirling  formula  and  the  route  along  the  dotted  line 
through  B  represents  the  Neivton-Bessel  formula.  The  Newton- 

Gauss  formula,  which  is  represented  in  the  diagram  by  a  zigzag 
intermediate  route,  is  equivalent  to  the  Stirling  formula  at  the 

vertices  82ru0  and  82r+2u0,  and  it  is  also  equivalent  to  the  Bessel 

formula  at  the  vertices  S2r-%£  and  S2r+1%i. 
Consider  the  three  routes  representing  the  Gauss  and  the 

Stirling  formulae  and  the  formula  which  contains  the  differences 

S2'-1^!  S2'V0,  S2^1^,  and  Pr+zuQ.  If  we  suppose  these 
formulae  to  be  curtailed  so  that  the  last  difference  of  each  is  of 

order  2r  +  1,  we  may  compare  the  accuracy  of  these  formulae 

by  ascertaining  the  magnitude  of  the  neglected  terms  of  order 

(2r  +  2).  The  sum  of  the  elements  along  either  of  the  routes  from 

the  common  vertex  82r+2u0  to  the  line  of  zero  differences  being 
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the  same,  the  most  accurate  formula  is  the  one  in  which  the 

neglected  term  of  order  (2r  +  2)  is  the  smallest.  These  terms  are  : 

''+2uQ,  %{(n  +  r)2,+2  +  (n  +  r  +  l)2,+2 

respectively,  and  they  are  also  arranged  in  ascending  order  of 

magnitude.  The  Newton-Gauss  formula  is  therefore  more 
accurate  as  far  as  mean  differences  of  order  (2r+l),  when 

further  terms  are  neglected,  than  the  corresponding  Newton- 
Stirling  formula  passing  through  the  same  differences  of  even 

order  ;  and  both  are  more  accurate  than  the  formula  containing 

the  difference  S2r+1w_£.  In  precisely  the  same  way  we  see 
that  the  Bessel  formula  is  more  accurate  than  the  Gauss 

formula  as  far  as  differences  of  even  order  when  further  terms 

are  neglected.  In  general,  a  central  -difference  formula  terminat- 
ing at  a  mean  difference  of  the  entry  up  is  more  accurate  than 

a  formula  which  is  curtailed  at  the  corresponding  central- 

difference  of  up_i,  and  it  is  less  accurate  than  a  formula  which 

is  curtailed  at  the  corresponding  difference  of  up+i* 

We  shall  now  illustrate  by  an  example  the  superiority  which  central- 
difference  formulae  generally  have  over  other  interpolation  formulae. 

Let  it  be  required  to  find  um  where  —  ̂ x<|.  If  we  employ  for 
this  purpose  an  interpolation  formula  which  proceeds  according  to 
central  differences  of  «0,  and  stop  at  the  (2r+l)th  term,  the  result  is 

the  same  as  if  we  employed  Lagrange's  formula  with  given  values  of 
u-rt  u-r+i,  •  •  -1  un  so  tnat  by  §  19  the  error  is 

i),fr 

where  £  denotes  some  number  between  a  —  rw  and  a  +  rw.  If,  on  the 
other  hand,  we  employ  the  Gregory-Newton  formula,  and  stop  at  the 
(2r+l)th  term,  the  result  we  thereby  obtain  is  the  same  as  if  we 

employed  Lagrange's  formula  with  given  values  of  UQ,  u^  .  .  .,  uzn  so that  the  error  is 

afo-1)  .   .   .   (a;  -  2r 

where  77  denotes  some  number  between  a  and  a+2rw,  Now 

does  not,  in  most  cases,  differ  greatly  from  /(2r+ll(^),  but  (x  +  r)(x  +  r  -  1) 
.  .  .  (x  —  r)  is  much  smaller  than  x(x  —  1)  .  .  .  (x  —  2r)  in  absolute 
value  when  —  <x<.  Thus  the  error  is  smaller  in  the  former  case  than 

*  A  detailed  discussion  of  the  accuracy  of  interpolation  formulae  is  given  in 
papers  by  W.  F.  Sheppard,  Proc.  Lond.  Math.  Soc.  4  (1906),  p.  320,  and  10  (1911), 

p.  139  ;  D.  C.  Fraser,  J.I.A.  50,  pp.  25-27  ;  G.  J.  Lidstone,  Trans.  Fac.  Act.  9  (1923). 
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in  the  latter.  For  this  reason  central-difference  formulae  are  prefer- 
able to  the  ordinary  formulae  for  advancing  differences. 

The  following  remarks*  are  of  general  application  : 
"  Formulas  which  proceed  to  constant  differences  are  exact,  and  are 

true  for  all  values  of  n  whether  integral  or  fractional. 

"  Formulas  which  stop  short  of  constant  differences  are  approximations. 
"  Approximate  formulas  which  terminate  with  the  same  difference  are 

identically  equal. 

"  Approximate  formulas  which  terminate  with  distinct  differences  of 
the  same  order  are  not  identical.  The  difference  between,  them  is 

expressed  by  the  chain  of  lines  necessary  to  complete  the  circuit." 

30.  Preliminary  Transformations.  —  In  certain  cases 
formulae  of  interpolation  should  not  be  used  until  some 

preliminary  transformation  has  been  effected.  "We  shall  illus- 
trate this  by  two  examples. 

Ex.  I.- — Suppose  that  it  is  required  to  find  L  sin  15".  We  have  from 
a  table  of  logarithms  the  following  entries  : 

e. 

0°  0'  10" 

L  sin  0. 
5-6855749 

3010300 

20" 

5-9866049 -1249388 

1760912 737864 

30" 

6-1626961 
-511524 

1249388 231236 

40" 

6-2876349 
-280288 

969100 

50" 

6-3845449 

The  differences  are  evidently  very  slowly  convergent.  One  reason  for 
this  will  be  seen  when  it  is  remembered  that  when  6  is  small  and 

6"  =  x  radians,  then  sin  x  =  x  —  -a;3  +  .  .  .  and  x=6sinl"  (nearly), 
so  that  L  sin  $=L  sin  l"  +  log  6  (nearly),  and  the  differences  of  log  6 
for  the  values  10,  20,  30,  40,  50  ...  of  6  are  very  slowly  convergent. 
We  therefore  calculate  L  sin  6  when  0  is  small  by  adding  the  inter- 

polated values  of  L('         j,  which  has  regular  differences,  and  log  0,  for 
which  tables  exist  with  smaller  intervals  of  the  argument. 

Ex.  2.  —  Suppose  it  is  required  to  interpolate  between  two  terms  of 
such  a  sequence  as  the  following  : 

j       r        r(r  +  1)       r(r+l)(r  +  2)         r(r+  l)(r  +  2)(r+  3) 
p      p(p+T) 

where  r  and  p  are  two  widely  different  numbers. 

*  D.  C.  Fraser,  J.I.  A.  43  (1909),  p.  238. 
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It  is  best  to  interpolate  in  the  sequence  of  numerators 

1,  r,  r(r+l),  r(r  +  l)(r  +  2),  .   .   . 

and  to  interpolate  separately  in  tlie  sequence  of  denominators 

We  then  divide  the  former  result  by  the  latter,  in  order  to  obtain  the 
required  interpolated  value. 

Stirling  (Methodus  Differentialis  (1730),  Prop.  xvii.  Scholium)  says: 
"  As  in  common  algebra  the  whole  art  of  the  analyst  does  not  consist 
in  the  resolution  of  the  equations  bxit  in  bringing  the  problems  thereto  ; 
so  likewise  in  this  analysis  :  there  is  less  dexterity  required  in  the 
performance  of  the  process  of  interpolation  than  in  the  preliminary 

determination  of  the  sequences  which  are  best  fitted  for  interpolation." 
The  general  rule  is  to  make  such  transformations  as  will  make  the 

interpolation  as  simple  as  possible. 

EXAMPLES  ON  CHAPTEK  III 

1.  Given 

sin  25°  41'  40"  =  0-433  571  711  655  565 
sin  25°  42'    0"  =  0-433  659  084  587  544 

20"  =  0-433  746  453  442  359 
40"  =  0-433  833  818  219  189 

find  the  value  of  sin  25°  42'  10"  by  the  Newton-Gauss  formula. 

2.  Find  the  value  of  log  sin  0°  16'  8"-5  having  given 

log  sin  0°  16'  7"  =  7-670  999  750  0 8"  =  7-671  448  629  9 
9"  =  7-671  897046  4 

10"  =  7-672  345  0002 

using  the  Newton-Gauss  formula. 

Check  your  result  by  obtaining  log  sin  0°  16'  8"-5  from  the  following data  : 

log  sin  0°  16'  6"  =  7-670  550  405  5 
8"=  7-671  448  629  9 

10"  =  7-672  345  000  2 
12"  =  7-673  239  524  3 

3.  Apply  the  Newton-Stirling    formula  to  compute  sin   25°  40'  30" from  the  table  of  values 

sin  25°  40'  0"  =  0-433134785866963 
20"  =  0-433222  179172439 
40"  =  0-433309568404859 

sin  25°  41'  0"  =  0-433396953563401 
20"  =  0-433484334647243 

and  verify  your  answer,  using  the  Newton-Bessel  formula. 
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4.  Given 

log  310  =  2-4913617 
320  =  2-5051500 
330  =  2-5185139 
340  =  2-5314789 
350  =  2-5440680 
360  =  2-5563025 

find  the  value  of  log  3375  by  the  Newton-Bessel  formula,  verifying  the 
result  by  one  or  more  other  central  -difference  formulae  and  comparing 
it  with  the  true  value.  [3-5282738.] 

5.  Show   that   the    lozenge-diagram    method    really  derives    all   the 
interpolation  formulae  by  repeated  summation  by  parts,  i.e.  by  the  use 
of  the  formulae 

which  is  the  analogue  in  the  Calculus  of  Differences  of  the  formula 

fudv  =  uv  —  fvdu 
in  the  Integral  Calculus. 



CHAPTER  IV 

APPLICATIONS   OF   DIFFERENCE   FORMULAE 

31.  Subtabulation. — An  important  application  of  inter- 
polation formulae  is  to  the  extension  of  tables  of  a  function. 

Thus,  supposing  we  already  possess  a  table  giving  sin  x  at 

intervals  of  1'  of  x,  we  might  wish  to  construct  a  table  giving 

sin  x  at  intervals  of  10"  of  x.  This  operation  is  called  sub- 
tabulation.  Subtabulation  might  evidently  be  performed  by 

calculating  each  of  the  new  values  by  ordinary  interpolation, 
but  when  the  new  values  are  required  in  this  wholesale  fashion 

it  is  better  to  proceed  otherwise,  forming  first  the  differences  of 

the  new  sequence  of  values  of  the  function,  and  then  calculating 

the  latter  from  those  differences.* 

Let  T0,  Tp  T2,  T3,  ...  be  a  given  sequence  of  entries  in  a 
table  corresponding  to  intervals  w  of  the  argument,  and  let 

their  successive  differences  be  AT0  =  Tj  -  T0,  A2T0  =  T2  -  2Tt  +  T0, 
etc.  Suppose  it  is  desired  to  find  the  values  of  the  function 

in  question  at  intervals  w/m  of  the  argument  so  that  (m  - 1) 
intermediate  values  are  to  be  interpolated  between  every  two 

consecutive  members  of  the  set  T0,  T1;  T2.  .  .  .  Denote  the 

sequences  thus  required  by  t0>  tv  t2,  .  .  .,  so  that  t0  =  T0,  tm  =  T1; 
km  =  ̂ 2,  km  =  T3,  etc.,  and  let  the  successive  differences  in  the 
new  sequence  be 

AJ£Q  =  tj  —  tp,     Aj  'o  =  2  ~  "  \  ~^~  o>  ®kc., 
where  \  is  used  instead  of  A  to  denote  the  operation  of 

differencing  in  the  new  sequence.  The  differences  in  the  new 

sequence  may  now  be  found  in  terms  of  the  differences  in  the 

old  sequence  by  the  use  of  operators  in  the  following  way. 

*  Lagrange,  (Euvres,  5,  p.  663  (1792-3). 

53 
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Denoting  the  initial  value  t0  or  T0  by  f(a),  we  have  by  the 

Gregory-Newton  interpolation  formula  : 

and  the  operators  \  and  A  are  thus  connected  by  the  relation 

A!  =  (1/m^A  +  (l/m)2A2  +  (l/m)8A»  +  .  .  .  (1) 

Suppose  for  simplicity  that  A4T0  is  the  last  non-zero  difference 

of  the  original  sequence,  so  that  A5T0  =  0,  A6T0  =  0,  etc. 
Equation  (1)  gives 

V  -  {(1/m^A  +  (l/7/i)2A2  +  (l/m),A»  +  (l/m)4A*}s.  (2) 
If  we  now  substitute  the  values  8  =  1,2,3,4  in  the  last  equation, 
we  are  able  to  determine  all  the  differences  of  the  new  sequence 

in  terms  of  the  differences  of  the  old  sequence  : 

A  A  =  i 
1  u 

in 

(l-m)(l  -  2m)  (1  -  3m) ~*~  lo' 

(5) 

(6) 
When  the  differences  are  thus  calculated,  the  entries  t1}  tz,  t3 

may  be  derived  in  the  usual  way  by  simple  addition.  The 
values  of  tm,  tzm,  tsm,  .  .  .  formed  in  this  way  should  agree 

with  the  tabulated  values  T1?  T2,  T3,  .  .  . 

Ex.  —  The  logs  of  the  numbers  1500,  1510,  1520,  1530,  1540  being 
given  to  nine  places  of  decimals,  to  find  the  logs  of  the  integers  between  1500 
and  1510. 

The  difference  table  of  the  original  values  is  as  follows  : 
A3.          A*. 

249 

-4 

245 

No. 
log. 

A. 

A2. 1500 176091259 
2885688 

1510 178976947 

-19047 

2866641 
1520 181843588 

-18798 

2847843 
1530 184691431 

-  18553 

2829290 
1540 187520721 
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Here  m=  10. 

.-.  Aj4  =  — _(  —  4)=  —0-0004  in  the  ninth  place,  which  is  negligible, 

~103'              2-10* 

—       (  —  19047)+               2 

which  is  approximately  constant, 

a  —  10W7  —  1  1  0"i <*-?-*-              '"A1            L"//       A\             1Q9.7/1 

—      "885RftR  -1-            —  ' 

—  **   T^   ~                                         }j     \            ̂   I                  1.  ij  £t      I  *±  . 12-1  0 

a   _  1  n\  /i        9OA 
ii7ut<j-t-                        —''249 10 

2-102 
6-103 

=  288568 

•8 

(1-10)  (1-20)  (1-30) r~  "^  "^~^~  ~  ̂ ~^       —  ̂ j     V  ̂~      / 

857 
•115 

7 •0965 

0 •08265 
• =  289433 

•094 

No. logs. 

1500 176091259-1 

289433-1 1501 176380692-2 
-192-74 

289240-4                             0-25 
1502 176669932-6 

-192-49 

289047-9                             0-25 
1503 176958980-5 -  192-24 

288855-6                            0-25 
1504 177247836-1 

-191-99 

288663-6                            0-25 
1505 177536499-7 

-191-74 

288471-9                             0-25 
1506 177824971-6 -  191-49 

288280-4                            0-25 
1507 178113252-0 -  191-24 

288089-2                            0-25 
1508 178401341-2 

-190-99 

287898-2                             0-25 
1509 178689239-4 

-190-74 

287707-4 1510 178976946-8 

The  required  new  table  is  : 
No.  log. 
1500  3-176091259 

1501  3-176380692 

1502  3-176669933 

1503  3-176958981 

1504  3-177247836 

1505  3-177536500 

and  the  final  value  of  log  1510  agrees  with  the  original  value. 

No. 

1506 
1507 

1508 
1509 

1510 

log. 

3-177824972 

3-178113252 

3-178401341 

3-178689239 
3-178976947 
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32.  An  Alternative  Derivation.  —  It  is  frequently  convenient  when 
dealing  with  a  function  whose  degree  is  known  to  insert  values  of 
the  function,  intermediate  to  those  already  tabulated,  by  the  following 
method  : 

Suppose,  for  example,  that  a  function  f(x)  may  be  represented  by  a 
polynomial  of  the   third   degree,  and   that  values  of  the   function  are 
tabulated  at  intervals  w  =  10  of  the  argument.     Let  it  be  required  to  insert 
values  at  an  interval  w=l.     Using  the  notation  of  the  last  section,  we 
have  (by  the  Gregory-Newton  formula) 

T  =  t 
T°i  =  4= 
T2=  'ao  = 
T3  =  ̂ 30  =  t0  +  30A^0  +  435  A!%  +  4060A1%. 

Differencing  these  equations,  we  see  that 

AT0= 
,,  +  145^%  +  1  020Aa%, 

AT2=  10A1*0+245A1% 

Similarly  A2T0  =  1  00  Ax%  + 
A2T1=  lOOA^  + 

.-.  A3T0=1000A1%. 

The   leading  term  and  its  differences   for  the  subdivided  intervals  are 
seen  to  be 

Aj%  =  -OlA2T0  -  -009A3T0, 
A^0  =-lAT0--045A2T0 

from  which  the  values  t-^  tz,  ts,  .  .  .  are  formed  by  addition. 
Ex.  —  Having  given  a  table  of  values  of  log  x  at  intervals  of  the  argument 

w=5,  to  insert  between  log  6250  and  log  6255  the  intermediate  values  of 
the  function  at  intervals  w=  1. 

Entry.  A.  A2. 

Put  T0  =  log  6250  =  3-7958800 
3473 

T^  log  6255  =  3-7962273  -3 3470 

T2  =  log  6260  =  3-7965743  -2 3468 

T3  =  log  6265  =  3-7969211 
The  differences  of  the  second  order  are  approximately  constant,  so  we 
assume  log  x  to  be  a  polynomial  of  the  second  degree. 

T0=f0=  3-7958800, 

AT0=5A1f0+10A1%=3473, 

A2T0=25A1%=  -3. 
*  These  are  precisely  the  set  of  equations  of  §  31  when  A3T0,  the  third 

differences  of  the  tabulated  function,  are  assumed  to  be  constant. 
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From  these  equations  we  obtain  the  values 

A1%=-0-12,      A^0 

expressed  in  units  of  the  seventh  decimal  place. 
Forming  the  difference  table  for  the  subdivided  intervals, 

Entry.  Ar  A]2. 
log  62  50  =  37958800-00 

694-84 
log  62  51  =  37959494-84  -0-12 

694-72 
log  62  52  =  37960189-56  -0-12 

694-60 
log  62  53  =  37960884-16  -0-12 

694-48 
log  62  54  =  37961578-64  -  0-12 

694-36 
log  62  55  =  37962273-00 

We  may  now  insert  these  values  of  the  function  in  the  table  of  values,  thus  : 

log  6251  =  3-7959495 
log  6252  =  3-7960190,  etc. 

We  may  obtain  without  difficulty  formulae  for  subtabulation  based 

on  central-difference  formulae,  or  on  Everett's  formula.  These  are 
frequently  to  be  preferred  to  the  subtabulation  formulae  based  on  the 
Gregory-Newton  formula. 

Owing  to  the  rapid  accumulation  of  error  in  the  higher  orders  of 
differences,  care  must  be  taken  to  include  additional  places  of  digits  in 
the  computations,  as  in  the  above  examples. 

33.  Estimation  of  Population  for  Individual  Ages  when 

Populations  are  given  in  Age  Groups.  —  We  shall  now  find 
the  values  of  a  statistical  quantity,  such  as  the  population  of 
a  given  district,  for  individual  years,  when  the  sums  of  its 

values  for  quinquennial  periods  are  given.* 
Let  .  .  .,  w_2,  u_v  u0,  uv  u2,  .  .  .  be  the  values  of  the 

quantity  for  individual  years,  and  let  the  quinquennial  sums 
be  .  .  .,  Wj,  W0,  W_j,  .  .  .  ,  so  that 

"Wj    =u7    +  i(Q    +u5    +  u±    +  u3, 

It  is  required  to  find  the  value  it0  in  terms  of  the  Ws. 

*  G.  King,  J.I.  A.  43,  p.  109  (1909).     See  also  50,  p.  32. 
(D  309)  E 



58    APPLICATIONS  OF  DIFFEEENCE  FOEMULAE 

The  Newton-Stirling  formula  may  be  written 
n(n2  -  1)  A3w  _  9  +  A%  _  , -   --  ~ 

If  we  denote  utl  +  u_n  by  yn  and  neglect  the  differences  of 

the  fourth  and  higher  orders,  we  may  write 

Therefore  W0  =  u0  +  y±  + 

=  5uQ 

and  
W  +  W_   =  ?    + 

Eliminating  ̂ .2u_1  from  the  two  last  equations,  UQ  may  be 
expressed  in  terms  of  the  Ws  : 

or,  writing  A2W_X  for  (W  _1  -  2W0  +  W1),  we  obtain  the  result 

or  w0  =  0-2W0-0-008A2W_1.  (1) 
Ex.— To  find  the  value  of  the  quantity  for  the  middle  year  of  the  second 

quinquennium,  when  the  following  are  three  consecutive  quinquennial 
sums:  36556:  39387:  41921. 

Denote  the  given  quinquennial  sums  by  W_x,  W0,  W1  respectively, 
and  form  a  difference  table. 

W_j  =  36  556 2831 

W0=39387  -297 2534 

W1  =  41  921 

The  required  quantity  u0  is  therefore,  by  (1), 

«0  =  0-2  x  39  387  -  -008  ( -  297) 
=  7877-4  +  2-4 
=  7879-8, 

so  «0=7880. 

The  above  formula  may  be  extended  to  include  the  fourth 

differences  of  the  Ws  when  we  neglect  the  differences  of  the  u'a 
of  the  sixth  and  higher  orders.*  We  have  now 

*  When  the  groups  are  unequal,  we  can  proceed  in  a  similar  way,  using 
divided  differences. 
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yn  =  un  +  u_n 
=  2«. 

.0 

y±  +  7/2 A%  _  2,  (2) 
+  377A%_2, 

W2  +  W_2  =  10w0  +  SlOA2^  +  4627A%_2. 

Eliminating  UQ  from  the  three  last  equations,  we  have 

and  AWj  -  AW_2  =  S^BA^.j  +  4250A%_2, 

and  eKminating  A2w_j  from  these  two  equations  we  find  that 

and  A2^.!  =  0-008A2W_1  -  0-00096A4W_2. 

If  we  now  substitute  these  values  in  equation  (2),  we  obtain 
the  result 

UQ  =  0-2(W0  -  5A2M_t  -  A4,Y_2), 

or  u0  =  0-2W0  -  0-OOSA2W_1  +  0-000896A4W_2. 

This  value  of  UQ  was  also  given  by  G.  King.* 
The  following  demonstration  of  a  more  general   formula  is  due   to 

G.  J.  Lidstone. 
r  3r+l 

Let  W0  =  2tts,     Wx=  2  us,  etc., -r  r+l 

and  let  yx=        2       us, 
p 

where  p  is  some  number  independent  of  x.     From  these  definitions  we 
have  at  once 

and 

In  Bessel's  formula, 

,  TO(m2  -  j) ~  — 

Form  the  difference  y%+m-  y*_m  an(l  in  the  result  substitute  W  and  its 

*  J.I.  A.  43,  p.  114. 
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differences  for  Ai/  and   its    differences.     We  thus    obtain  the   required 
formula. 

The  result  is 

which,  when  2r  +  1  =  5,  becomes 

M0=0-2W0-0-008A2W_1  +  _ 
as  found  above. 

34.  Inverse  Interpolation.  —  We  shall  now  consider  the 
process  which  is  the  inverse  of  direct  interpolation,  namely,  that 

of  finding  the  value  of  the  argument  corresponding  to  a  given 
value  of  the  function  intermediate  between  two  tabulated  values, 

when  a  difference  table  of  the  function  is  given.  This  is  known 
as  inverse  interpolation. 

Let  f(a  +  xw)  denote  a  particular  value  of  the  function  of 
which  the  differences  are  tabulated.  We  now  wish  to  find  the 

value  of  the  argument  x  corresponding  to  f(a  +  xw}  ;  for  this 

purpose  it  is  best,  if  -  \<x<^,  to  use  Stirling's  formula  * 

f(a  +  xw}  =f(a}  +  z|{A/(a)  +  A/(a  -  w)}  +  f  z2A2/(a  -  w) 
-  w)  +  A3/(a  -  2io)} 
-  2w)  +  .  .  .  (1) 

Dividing  throughout  by  |{A/(«)  +  A/(a  -  w)},  the  coefficient 
of  x,  equation  (1)  may  be  written  in  the  form 

x  =  tn-$3?D1-%x(a?-l)T)2-1fea?(a?-l)n3-.  .  .        (2) 

where    ra  =  {/(a  +  xw)  -/(a)}/i{A/(«)  +  A/(a  -  w)}, 

D,  =  {A2/(«  -  i*}/H4fa)  +  A/(a  -  w)}, 

D2  =  {A3/(a  -w)  +  A3/(«  -  2^)}/{A/(a)  +  A/(a  -  w)}, 

and  so  on.  We  have  now  to  solve  equation  (2)  by  successive 

approximations. 

1st  approximation  :  x  =  m. 

Substituting  this  value  in  equation  (2)  we  obtain  the  2nd 

approximation  : 

x  =  m-  WDj  -  im(m2  -  1)D2  -  -^m2(m2  -  1)D3 

This  value  of  x  is  now  substituted  in  equation  (2)  to  form  the 
3rd  approximation  for  x,  and  so  on  for  further  approximations. 

*  If  |<a;<f,  Bessel's  formula  should  be  used. 
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Instead  of  solving  equation  (2)  by  successive  approximations  we  may 
arrange  it  in  the  form 

We  have  merely  to  reverse  this  series  to  obtain  a  formula  from  which  x 
may  be  found  by  direct  substitution,  namely, 

A. 

A2. As. 11-0886094 
0-2293434 

11-3179528 
0-0041112 

0-2334546 

11-5514074 
0-0041775 

0-2376321 

11-7890395 

As  an  example  of  inverse  interpolation,  suppose  we  wish  to  find  the 

positive  root  of  the  equation  * 

27+28s4-  480  =  0. 

Writing  y  =  z!  +  28s4  -  480,  and  finding  by  a  rough  graph  that  the 
root  is  a  little  over  1-9,  we  construct  the  following  difference  table : 

2.  y. 
1-90      -25-7140261 

1-91  -14-6254167 

1-92  -  3-3074639 

1-93  8-2439435 

1-94          20-0329830 

Evidently  the  root  lies  between  1-92  and  1-93,  and  therefore  if  the  root 

be  1-92  +  0-Olx,  we  have  by  Stirling's  formula  in  equation  (1) : 

0  =  -  3-3074639  +  1  l-4346801x  +  0-1 167273s;2  +  0-0006907(x3  -  a;), 
0=  -  3-3074639  +  ll-4339894x  + 0-1167273x2  + 0-0006907*3. 

Dividing  throughout  by  the  coefficient  of  x, 

x  =  0-28926595  -  0-0102088x2  -  0-0000604x3. 

1st  approximation  :  x  =  0-28926595, 
2nd  approximation  :  x  =  0-28926595  -  0-0102088  x  0-083675 

-0-0000604x0-0242 
=  0-28841027, 

3rd  approximation  :  x  =  0-28926595  -  0-0102088  x  0-0831805 
-0-0000604x0-0240 

=  0-28841533. 

The  required  root  is  1-9228841533,  correctly  to  10  decimal  places. 

*  This  equation  was  suggested  by  W.  B.  Davis  (Ed.   Times,  1867,  p.  108) 
but  solved  otherwise  by  him. 
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35.  The  Derivatives  of  a  Function.  —  From  the  Gregory- 
Newton  formula 

f(a  +  xw)  =/(«)  + 

+  X(X~lHX~2}^f(a)  +  .  .  .     (1) 
we  have  at  once 

f(a  +  xw)-f(a) 
xw 

If  a;  is  taken  very  small  so  that  xw->Q,  the  left-hand  side  of 

the  equation  is  of  the  form  {/(a  +  h)  -f(a)}fh.  The  limiting 
value  of  this  expression  when  7t->0  is  the  derivative  of  the 
function  f(x)  for  the  value  a  of  its  argument.  We  thus 
obtain 

)  +  ...}.        (2) 

The  successive  derivatives  of  the  function  may  be  obtained 

by  the  use  of  the  differential  calculus  in  the  following  way. 

Differentiating  (1),  we  obtain 

wf(a 

4a;3  -  ISx2  +  22x  -  6 
+  -  -jp 

Also 
fir2  —  1  Sr  -4-  1  1 

xw)  =  A2/(a)  +  (x  - 

and  so  on  for  derivatives  of  higher  order. 

Putting  x  =  0  in  this  set  of  equations,  we  obtain  the  results 

wf(a)  =  A/(a)  -  i-A2/(rO  +  ̂ f(a)  -  ̂ f(a)  +  ̂ f(a) 

+  .  . 

)  -  f  A4/(a)  +  f  A 
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Ex. — To  find  the  first  and  second  derivatives  of  locje  x  at  x=  500. 

A4. 

X. 
lOffe  X. 

A. 

A2. 
A3. 500 6-214608 

19803 
510 6-234411 

-385 

19418 15 
520 6-253829 

-370 

19048 14 
530 6-272877 

-356 

18692 
13 

540 6-291569 

-343 

18349 

550  6-309918 
Here  w  =  1  0  and 

10/'(500)  =  0-019803  +  |(0-000385)  +  £(0-000015) =  0-020001. 

Also  100/"(500)=  -0-000385-  0-000015  -^(0-000001) =  -0-000401. 

Neglecting  the  last  figure,  which  is  liable  to  error,  we  obtain  the  results 

/'(500)  =  0-002000 

/"(500)=  -0-0000040. 

We  may  find  the  formula  for  the  wtli  derivative  of  a  function  other- 
wise, by  using  symbolic  operators  and  expanding  the  function  f(a  +  w)  by 

Taylor's  Theorem. 
7/7 

Thus  f(a  +  w)=/(a)  +  wf(a)  +     f"(a)  +  .  .  .  (1) 

If   we   denote  —  ,  the  operator  for  differentiation,  by   D,  equation    (1) dx 
becomes 

or  (l+A)/(a)==ewD/(a), 
and  l  +  A  =  e'"D.  (2) 

Taking  logarithms  of  each  side  of  this  equation, 

=     - 

or  Wf'(a)  =  A/(«)  -  |A2/(a)  +  1  A«/(a)  -  ...  (3) 

Also  ™2D2={log(l+A)J2 

Therefore  w2/»  =  (A  -  |A2  +  £A3  -  .  .  .)2/(a) 

(4) 
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and  in  general 

«,»/<»>(«)  =  (A  -  1A2  +  1A3  -  |A4  +  .  .  .)-/(„).  (5) 

36.  The  Derivatives  of  a  Function  expressed  in  Terms 
of  Differences  which  are  in  the  same  Horizontal  Line.  — 

By  differentiating  Stirling's  formula, 

f(a  +  X'w]  =/(«)  +  4{A/(ft)  +  A/(«  -  w)  +  iz2A2/(«  -  w) 
+  ±x(x2  -  l2)|{A3/(a  -  w)  +  A3/(«  -  2w)} 

+  T^(»2  -  I2)  (*2  - 
+  ̂ ^x2(x2  -  I2)  (x2  -  22) 

the  differential  coefficients  may  be  represented  by  a  rapidly 
converging  series  in  terms  of  the  horizontal  differences.     Thus 

wf'(a  +  xw) 

w)}  +  zA2/(«  -  2w) 
-  w)  +  A3/(«  -  2w)} 

-  2^a) 

=  A2/(«  -  2w)  +  x^3f(a  
-  w}  +  A3/(«  -  2w)} 

-  2w)  +  A5/(«  -  3w)}  +  .  .  . 

Putting  x  =  0  in  these  equations,  we  have 

wf(a)  =  i{A/(«)  +  A/(«  -  1.)}  -  H(A3/(«  -  «')  +  A3/(«  -  2w)} 
+  aVi(A5/(«  -  2w)  +  A5/(«  -  3w)}  +  .  .  .     (1) 

w*f"(a)  =  A2/(a  -  w)  -  jf&fta  -  2w)  +  ̂ tff(a  -3w)+.  .  .       (2) 
These  equations  give  the  value  of  the  derivatives  in  terms  of 

differences  which  are  symmetrical  as  regards  the  direction  of 
increasing  and  decreasing  arguments. 

In  order  to  extend  these  results  to  derivatives  of  higher 

order  we  shall  write  Stirling's  formula  in  the  central-difference 
notation  of  §  20  as  far  as  differences  of  the  eighth  order. 

f(a  +  xw)  =  u0  +  X(jiSu0  +  IX^ZUQ  +  lx(xz  -  1)^S%0  +  '^x2(x2  -  1)S%0 
+  ̂ x(x2  -l)(x2-  4)^/0  +  ri»x2(x2  -  1)  (x2  -  4)S%0 
+  Wau«(^  -  1)  (*2  -  4)  (x2  -  9)^/0 

-  1)  (z2  -  4)  (x2  -  9)5%0. 
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When  the  right-hand  side  is  arranged  according  to  ascending 
powers  of  x,  we  obtain 

f(a  +  xw]  =  u0  +  x(fj.8u0 

-  aio/^X)  +  ̂(rW^o  -  m^X)-    (3) 

If  both  sides  of  this  equation  are  differentiated  and  we 

substitute  the  value  x  =  0,  we  obtain  the  value  of  wf'(ct)  as  in 
equation  (1)  ;  and  the  higher  derivatives  of  /(«.)  are  formed  by 

differentiating  wf'(a  +  xw),  wzf"(a  +  xw),  and  so  on. 
The  successive  derivatives  of  f(a)  correct  to  differences  of 

the  eighth  order  are  given  by  the  following  equations  : 

We  see  that  wf'(a)  is  equal  to  the  coefficient  of  x  in  (3)  and, 
in  general,  ivnf(n\a)  is  equal  to  the  coefficient  of  xn  in  the 

equation  (3)  multiplied  ~by  n  \.  This  result  might  have  been 
obtained  at  once  by  comparing  (3)  with  Taylor's  expansion 
of/(«  +  xw}. 

37.  To  express  the  Derivatives  of  a  Function  in  Terms 
of  its  Divided  Differences.  —  We  shall  first  find  the  derivative 

of  a  function  f(x)  for  the  particular  value  a0  of  the  argument  x 

in  terms  of  its  divided  differences.  As  shown  at  equation  (3), 

§  13,  we  may  write 

f(u,a0)  =/(«0>«i)  +  (u  ~  «i)/(Vi>rt2)  +  (u  ~  ai)(u  ~  «2)/K.«i>«2.«3) 
+  .  .  .  +  (u  -  a^)  (u  -  a2)  .  .  .   (u  -  «<n-i)/K.  av  .  .  .,«„), 

where  the  divided  differences  of  order  beyond  the  wth  are 

supposed  negligible.  If  we  put  u  =  a0,  we  have 

/K>  «o)  =/K'  «i)  +  (ao  ~  ai)f(ao>  «i.  «a) 

+  K  -  «i)  («o  -  aa)/K  «i.  a2-  «s)  +  •  •  • 

+  K  -  ai)  K  ~  aa)  •  •  •   K-«n-i)/K'ai>  •  •  •»  an).     (1) 
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But  in  §  16  we  found  that 

f(u)  =/(«0)  +  (w  -  «0)/(«o>  «o)  +  (u  ~  «'o)2/K.  ar»  ao) 
+  (u  ~  «o)3/K.  rto>  ao>  ao)  +  •  • 

and  by  Taylor's  expansion, 

so  that  /'(«„)  =/K'  fto)>  i/"(«o)  =/K>  ao>  ffo)>  and  in  general 

f(n\a0)/n  I  =/(«0>  «0,  .  .  .,  «.„), 

which  gives  the  nth  derivative  in  terms  of  the  divided  differ- 
ence of  the  ft  th  order  with  repeated  arguments. 

Equation  (1)  thus  becomes 

/K)  =/K  «i)  +  K  -  «il/(rto.«i.ff2)  +  K  -  «i)(«-o  -  «2)/(«o.«i.a2.«3 
+  .  .  .  +  (a0  -  «i)  K  ~  rta)  •  •  •  K-«»-i)/K'«i>  •  •  •>  «»)>  (2 

which  gives  f'(a0]  in  terms  of  its  successive  divided  differences. 
As  a  special  case  of  this  formula  when  a±  =  a0  +  w,  a2  =  aQ+  2«>,  etc. 

««0 

•which  is  the  formula  of  §  35. 

A  more  general  expression  for  the  derivatives  of  a  function 
in   terms   of   its    divided   differences   may   be    obtained   from 

Newton's  formula  : 

f(x)  =/(a0)  +  (x  -  a0}f(a0,  flj)  +  (x-  «0)  (x  -  ̂ /K'  «i-  «2) 
+  (x  -  «.„)  (x  -  ax)  (a;  -  «2)/(«0'  av  <%>  c's}  +•  •  • 

Denoting  the  factor  (x  -  an)  by  an,  this  equation  becomes 

f(x]  =/(«0)  +  a0/(rt0,  ttj)  +  aoai/(rt0,  «1;  «2)  +  aoOjajj/fao,  Oj,  «2,  rt3) 

+  .  .  .  +  ̂ 0^2  .  .  .  <%_!/(«<),  rf1;  «2,  .  .  .,  an).     (3) 

Differentiating  both  sides  of  this  equation,  we  see  that 

f'(x)  =/(«0,  «!)  +  (a0  +  ̂ }f(a0,  alt  a2) 
+  (aQaj  +  a,0a2  +  a^'^MS'  %'  a2>  ff  s)  +  •    •    • 

/»/2  !  =,  /K,  «i.  «2)  +  (ao  +  «i  +  «2)/(S'  «i.  az>  as} 
+  (aQaj  +  a0a2  +  aQa3  +  axa2  +  a^g  +  a2a3)/(^0,  ftj,  Ctz,  C!3,  «4) 

and  so  on. 

+  (a0  +  aa  +  a2  +  a3)/(«0,  «1(  «2,  «3,  «4)  +  .    .    .       (5) 

!  =/(a0,  alf  «2,  «3,  «4) 

"1  +  a2  +  «8  +  a4)/K'  «1>  «2'  r'3>  "4>  «s)  +  •    •    • 
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In  these  equations  the  coefficient  of  the  divided  differences  of  order  r 
is  a  symmetric  function  of  the  quantities  a0,  aj,  «2,  .  .  .,  a.r_l.  In 

equation  (3)  this  coefficient  is  of  r  dimensions,  and  after  each  differentia- 
tion its  dimensions  decrease  by  unity  ;  so  we  see,  therefore,  that  the 

coefficient  of  /(a0,  ax,  .  .  .,  ar)  in  the  equation  for  f(r\x)/rl  is  unity 
(i.e.  zero  dimension  in  a0,  av  .  .  .,  ar_1),  and  all  differences  of  lower 
order  vanish. 

If  we  suppose  «0  =  «3  =  «2  =  «3  = .  .  .  =  a,,,  we  obtain  the  values  given 

above  :  /'(a0)=/(a0,  a0),  /"(a0)  =  2/(«0,  «0,  «0),  and  so  on. 
Substituting  in  equation  (4)  the  value  x  =  «0,  we  obtain  equation  (2), 

namely, 

The  latter  equation  is  used  when  the  derivative  of  a  single  value  of 

the  function  is  required  ;  but  when  the  derivatives  of  several  values  of 
the  function  are  to  be  computed,  we  use  equation  (4). 

Ex. — From  the  following  table  of  values  compute  the  third  and  fourth 

derivatives  of  f(B)  when  the  argument  6  has  the  values  5,  14,  and  23 
respectively. 

0       2          4  9  13  16  21  29 

57   1345   66340   402052   1118209   4287844   21242820 

We  first  form  a  table  of  divided  differences  : 

e. 

«o= 

=     4 

«2=     9 

«4=16 

a6=29  21242820 

57 

1345 
644 

1765 
12999 556 

66340 7881 
45 

83928 1186         1 

402052 22113 
64 238719 2274         1 

1118209 49401 81 

633927 4054 
4287844 114265 

2119372 

The  function  is  evidently  a  polynomial  of  the  5th  degree. 
Tabulating  the  values  of  a0,  aj,  a2,  .   .  .,  we  find 

0  =  5. 

a0  3 
«1  1 

a2 

a3  —    8 
a,  -11 

0=14. 
61  =  23. 

12 21 
10 19 
5 

14 1 10 

-2 

7 
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From  equation  (5)  we  have  at  once 

If  "(9)  =  556  +  K  +  al  +  «2  +  «3)45 
+  (aOal  +  aOa2  +  aOa3  +  aOa4  +  ala2  +  ala3  +  ala4  +  a2a3  +  a2a4  +  a3a4)l| 

so  /'"(5)=1626,     /"'(14)=12  102,     /"(23)=  32  298. 

From  equation  (6)  we  have 

£/"(&)  =  45  +  (a0  +  at  +  a2  +  a3  +  a4)l, 

so  /IV(5)  =  624,     /IV(14)=1704,     /1V(23)  =  2784. 

EXAMPLES  ON  CHAPTEK  IV 

1.  The  logs  of  the  numbers  400,  410,  420,  430,  440  being  given  to 
seven   places  of  decimals,    find    the   logs   of    the   integers   between   400 
and  410. 

log  400  =  2-6020600 
log  410  =  2-6127839 
log  420  =  2-6232493 
log  430  =  2-6334685 
log  440  =  2-6434527 

2.  If  ArT0  is  the  last  non-zero  difference  of  the  original  sequence,  so 

that    Ar+1T0=0,    A''+2T0  =  0,  .  .  .,  show  that  the    formulae    for    sub- tabulation  are  : 

r  2,  A,-2To  +     --A 0     mr~z  Zm?-1 

/(r-2)(l  -  m)  (1  -  2m)     (r  -  2)  (r  -  3)  (1  -m)^  . r~  ~~          ~ 

The  differences  of    order  higher  than  the  rth  in  the  new  sequence 
are,  of  course,  all  zero. 

3.  The  following  are  three  consecutive  quinquennial  sums  : 

44133,  41921  and  39387. 

*  Mouton,  an  astronomer  of  Lyons,  in  1670  noticed  that  if  in  a  sequence 
whose  ?-th  differences  are  constant,  say  =  c,  intermediate  terms  are  inserted 
corresponding  to  a  division  of  each  interval  of  the  argument  into  m  equal  parts, 

then  the  new  sequence  has  its  rih  difference  constant  and  equal  to  c/mr. 
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Find   the   value   of  the   quantity   for  the   middle    year   of   the    second 
quinquennium. 

4.   The  populations  for  four  consecutive  age  groups  are  given  by  the 
table  of  values 

Age  Group.  Population. 

25  to  29  years  (inclusive)  458572 
30  to  34  years  (       „       )  441424 
35  to  39  years  (       „       )  423123 
40  to  44  years  (       „       )  402918 

Estimate  the  populations  of  ages  between  32  and  33  years,  and  between 
37  and  38  years  respectively. 

5.  Show  that  if 

\\  o  =  u0/t  +  ul/t  + .  .  .  +  u(t_l)lt , 

and  in  general 

then  the  individual  value  ullt  may  be  found  from  the  groups  of  t  indi- 
vidual values  W0,  Wx,  W2).  .  .  and  their  differences  by  the  formula 

urlt  =  • 

where  third  differences  are  neglected.* 

6.  In  the  following  set  of  data  h  is  the  height  above  sea-level,  p  the 
barometric  pressure.      Calculate  by  a  difference  table  the  height  at  which 

2?  =  29  and  the  pressure  when  7i=5280. 

7i  =  0      2753      4763      6942      10593 

^  =  30      27        25        23         20 

7.  Form  a  difference  table  from  the  following  steam  data,  where  p  is 

pressure  in  Ibs.  per  square  inch. 

9°C  93-0  96-2  100-0  104-2  108-7 

p  11-38          12-80  14-70  17-07  19-91 

Calculate  p  when  0=99°-l  and  determine  by  inverse  interpolation  the 
temperature  at  which  p  =  1 5. 

8.  Calculate  the  real  root  of  the  equation 

x3  +  x  -  3  =  0 

by  inverse  interpolation. 

*  C.  H.  Forsyth,  Quarterly  Publications  of  the  American  Statistical  Associa- 
tion, December  1916. 
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9.  Find  the  differential  coefficient  of  loge  x  at  x  =  300,  given  the  table 
of  values 
x.  loge  x. 

300  5-703782474656 
301  5-707110264749 
302  5-710427017375 
303  5-713732805509 
304  5-717027701406 
305  5-720311776607 
306  5-723585101952 
307  5-726847747587 

Find  from  the  above  table  the  differential  coefficient  of  loge  x  at  x=  302. 

10.  Given  the  values 

x.  y. 

0  858-313740  095 
1  869-645772  308 
2  880-975826  766 
3  892-303904  583 

4  903-630006  875 

find  the  value  of  ---  when  x  =  0. 

dx* 
11.  Find  -    J~  when  z=  1.  given  the  following  values  : 

d?s 

z.  y. 

1  0-198669 

2  0-295520 

3  0-389418 

4  0-479425 

5  0-564642 

6  0-644217 

12.  Apply  the   central-difference   formulae  of   §  36   to  compute   the 
first  and  second  derivatives  of  log<,  304,  having  given  the  table  of  values 
of  Ex.  9. 

13.  From  the  following  data  compute  the  first  four  derivatives  of  the 

function  y  corresponding  to  the  argument  x  =  1  1  : 

x.  y. 
2  108243219 
5  121550628 
9  141  158  164 
13  163  047  364 
15  174  900  628 
21  214  358  884 
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King's  formula  for  quinquennial  sums, 
generalised,  59 

Lagrange's  formula,  28,  30   remainder  term  of,  32 

Lozenge  diagram,  43 

Newton's  formula  for  unequal  intervals, 24 
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Newton-Bessel   formula,    39,    42,    47, 
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49   backward  formula,  37,  43 

Newton-Stirling  formula,  38,  43,  46, 
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Operators,  symbolic,  4,  63 

Polynomial,  differences  of,  6 

Repeated    arguments,    divided    differ- ences with,  27 

Sub  tabulation,  53 

Symbolic  operators,  4 

Unequal   intervals,   Newton's  formula 
for,  24 

Zero,  differences  of,  6 
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